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Abstract

Traditional network analysis focuses on binary edges, while real-world relationships

are more nuanced, encompassing cooperation, neutrality, and conflict. The rise of

negative edges in social media discussions spurred interest in analyzing signed inter-

actions, especially in polarized debates. However, the vast data generated by digital

networks presents challenges for traditional methods like Stochastic Block Models

(SBM) and Exponential Family Random Graph Models (ERGM), particularly due

to the homogeneity assumption and global dependence, which become increasingly

unrealistic as network size grows. To address this, we propose a novel method that

combines the strengths of SBM and ERGM while mitigating their weaknesses by

incorporating local dependence based on non-overlapping blocks. Our approach in-

volves a two-step process: first, decomposing the network into sub-networks using

SBM approximation, and then estimating parameters using ERGM methods. We

validate our method on large synthetic networks and apply it to a signed Wikipedia

network of thousands of editors. Through the use of local dependence, we find pat-

terns consistent with structural balance theory.
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1 Introduction

Network analysis methods are traditionally constrained to binary edges, where relation-

ships are either positive (e.g., alliances, friendships) or negative (e.g., rivalries, conflicts).

However, these two types of relationships can occur simultaneously in many real-world

scenarios. For instance, Fritz et al. (2025) examined interstate conflict and cooperation

between 2000 and 2010. Similarly, Leskovec et al. (2010) studied in the setting of social

media networks how interaction patterns are affected by both positive and negative con-

nections between users. Historically speaking, signed networks were the basis of one of

the first network theories, being theories where the dependence between nodes is embed-

ded into the theory (Wasserman and Faust, 1994): Heider (1946) proposed the structural

balance theory giving rise to the aphorism that “the enemy of my enemy is my friend”.

The underlying theory divides triads into balanced and unbalanced. Balanced triads are

considered to be more stable and will, therefore, last longer than unbalanced triads.

However, the analysis of signed networks was hindered by limited computational re-

sources to estimate more complicated models and by expensive measurements that make

their observation possible. This situation has changed dramatically with the rise of so-

cial media platforms and the availability of digital trace data (Lazer et al., 2009). Online

interactions, especially in polarized settings, often contain positive and negative edges. In-

corporating negative relations provides a richer understanding of coalitions, conflicts, and

divisions within social systems (Leskovec et al., 2010).

Nevertheless, the modeling of signed networks remains challenging. On the one hand,

the class of models specifically designed for signed networks is relatively limited, since

most models were developed for unsigned networks. On the other hand, the massive size

of modern networks poses separate challenges, as even for unsigned networks many models
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struggle to scale computationally. At the intersection of these two issues, the need to model

both signed relations and large networks, there are little to no methods available.

Two of the most prominent models for network analysis are Stochastic Block Models

(SBM, Nowicki and and Snijders, 2001) and Exponential Family Random Graph Models

(ERGM, Lusher et al., 2013). SBMs are a latent variable model in which all dependence

between edges is accounted for by latent group membership. ERGMs, on the other hand,

allow for more complex local dependencies through so-called sufficient statistics (De Nicola

et al., 2023). Signed network extensions exist for both SBM and ERGM (Jiang, 2015;

Fritz et al., 2025) with inherent shortcomings: While the SBM can represent cohesive sub-

groups among the nodes, it implies conditional independence for forming edges between

nodes. This assumption is unrealistic for networks exhibiting more dependence among

edges. ERGMs, on the other hand, offer a flexible framework to analyze general network

properties. For a parsimonious model, these properties are commonly assumed to be homo-

geneous across the entire network. The induced global dependence structure, where each

edge may technically depend on every other edge in the same way, gives rise to undesirable

behavior specifically for large networks (Schweinberger, 2011; Handcock, 2003). Moreover,

the estimation process, when based on Markov Chain Monte Carlo (MCMC) methods, of-

ten fails due to the complexity and size of the data. Larger networks may imply degenerate

models with poor sampling properties and longer mixing times (Bhamidi et al., 2011).

In Section 3, we fill the resulting methodological gap by combining the strengths of

both models while simultaneously addressing their respective weaknesses, introducing local

dependence based on non-overlapping blocks. Our model assumes that each node is only

aware of the activities within its block. Consequently, the formation of within-block edges

can be characterized by a more complex ERGM, while between-block edges are not affected
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by endogenous effects (i.e., internal and structural influences within a network) that rely

on knowledge of neighboring areas. For example, in a social network, individuals may form

friendships within their immediate circle without being influenced by the entire network.

Snijders (2007) considered these models that combine latent space and exponential random

graph models as ‘the next generation of social network models’, capable of capturing both

cohesive structures and subgraph patterns in larger networks.

To enable large-scale estimation of our novel model extension, we rely on a two-step

estimation approach proposed by Babkin et al. (2020), which we detail in Section 4. In the

first step, the network is decomposed into sub-networks by approximating the likelihood

of the model with an SBM for signed networks. This step is carried out with the help

of a variational approximation and computationally fast MM updates (Vu et al., 2013).

We build upon the efficient algorithms introduced by Dahbura et al. (2021) by extending

them to handle signed networks. As outlined in Section 4.4, we incorporate uncertainty

quantification into this step to assess the reliability of the estimated block structure. In the

second step, the parameters are estimated given the previously estimated block structure

with known methods for ERGMs. Thereby, we enable the estimation of signed ERGMs

under local dependencies for large signed networks encompassing thousands of nodes. Ad-

ditionally, the local dependence assumption speeds up simulation, as the between-block

edges are characterized by a less complex model, and enables parallelization, as blocks are

conditionally independent given the block membership. To demonstrate the computational

advantage of this method, we apply it to both synthetic and real data with up to 5,000

nodes. In Section 6, we consider a large signed network of independent Wikipedia editors

(Lerner and Lomi, 2019), where users interact either by undoing (negative edge) or redoing

(positive edge) each other’s contributions (Lerner and Lomi, 2017). This network is par-
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ticularly suitable for a model that assumes local dependency because editors are likely to

have knowledge limited to their focus areas, and through our analysis we have successfully

identified these focus areas.

Our contributions are both methodological and computational:

1. We introduce a novel model of signed ERGMs with local dependence, enabling the

analysis of large signed networks where dyadic dependence is confined to within-block

structures.

2. We extend the efficient computing algorithms proposed in Dahbura et al. (2021) to

signed networks.

3. We account for the uncertainty of the inferred block structure in a principled manner.

4. We develop the open-source R package bigsergm, which implements our full estima-

tion procedure and is publicly available in the following GitHub repository mschal-

berger/bigsergm.

5. We demonstrate the method’s practical value by analyzing a large Wikipedia editor

network. We find evidence consistent with predictions of structural balance theory

in a large-scale, real-world setting.

Throughout this paper, we consider a signed network with N ∈ N nodes. The adjacency

matrix for this network is denoted as y = (yi,j) ∈ SN×N := Y , with S := {“ − ”, “0”, “ +

”}, where Y is the set of all observable signed adjacency matrices among N fixed nodes.

Therefore, yi,j = “ − ” indicates a negative edge, yi,j = “ + ” represents a positive edge,

and yi,j = “0” signifies the absence of an edge between nodes i and j. In the undirected

case, we have yi,j = yj,i, implying that the adjacency matrix is symmetric. For this paper,

we assume that the network is undirected and has no self-loops, so yi,i = “0”. However,
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extensions to the directed case follow naturally. By y(−ij), we denote y excluding yi,j. The

set of nodes is partitioned into K ∈ N disjoint blocks. Let Nk ∈ N denote the number

of nodes in block k, for k = 1, . . . , K, such that
∑K

k=1 Nk = N . The unobservable vector

zi = (zi1, . . . , ziK) denotes the block membership of each node, where zi,k = 1 if node i

belongs to block k, and zi,k = 0 otherwise. Let yk,l ∈ SNk×Nl denote the submatrix of y

that contains all edges between nodes in block k and nodes in block l, for k, l = 1, . . . , K.

Throughout this paper, capital letters refer to random variables, lowercase letters to their

realizations, and bold letters denote vectors or matrices.

2 Existing Models for Signed Networks

Statistical models provide a principled framework for analyzing signed networks, with the

most prominent examples being ERGMs and SBMs.

Signed Exponential Random GraphModel. The Signed Exponential Random Graph

Model (SERGM, Fritz et al., 2025) posits that an observed network can be fully charac-

terized through a set of sufficient statistics, which capture both endogenous dependencies,

which are structural features of the network, and exogenous influences, relating to informa-

tion such as covariate effects independent of the network (Lusher et al., 2013). Fritz et al.

(2025) defined the probability of observing y ∈ Y is given by

Pθ(Y = y) =
exp

(
θ⊤s(y)

)
κ(θ)

, (1)

where s(y) denotes a vector of sufficient statistics, given by a function s : Y → Rp,

weighted by the estimated coefficients θ ∈ Rp and the normalizing constant κ(θ) :=∑
ỹ∈Y exp

(
θ⊤s(ỹ)

)
guarantees that (1) sums up to 1. When facing large networks, this

framework faces several challenges: First, evaluating the normalization constant κ(θ) is
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intractable for almost all networks. Statistical inference generally relies on a MCMC ap-

proximations of the likelihood function, which often fails due to the complexity and size

of the large networks. Second, the sufficient statistics induce global dependence by be-

ing calculated over the entire network. The inclusion of these statistics, therefore, implies

knowledge about the entire network, which is unrealistic for networks with more than a

few thousand nodes.

Signed Stochastic Block Model. One approach to restrict the nodes’ knowledge lo-

cally is to cluster into blocks. A seemingly simple model along these lines assumes that

nodes exhibit structural equivalence within their respective block (Fienberg and Wasser-

man, 1981). Assuming that the block assignments are latent random variables that we learn

from observed networks leads to the Stochastic Block Model (SBM, Snijders and Nowicki,

1997), where the probability of any observed network y ∈ Y given a latent clustering Z is:

Pπ(Y = y | Z = z) =
∑
i<j

Pπ(Yi,j = yi,j | Zi = k, Zj = l),

where the sum ranges over all unordered pairs of distinct nodes (i, j) in the network. The

conditional probability to observe Yi,j = yi,j is assumed to be the probability mass function

of a Bernoulli-distributed random variable:

Pπ(Yi,j = yi,j | Zi = k, Zj = l) = π
yi,j
k,l (1− πk,l)

1−yi,j , (2)

where the block-specific connection probability between blocks k and l is given by πk,l ∈

[0, 1].

By substituting the conditional Bernoulli distribution in (2) with a multinomial distri-

bution, we can accommodate for signed edges yi,j ∈ S:

Pπ(Yi,j = yi,j | Zi = k, Zj = l) =
∏
y∈S

πk,l(y)
I(yi,j=y)
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where πk,l(y) with y ∈ S denotes the probability of Yi,j = y with
∑

y ∈Yi,j
πk,l(y) = 1 and

π = (πk,l(y)) (Li et al., 2023). A shortcoming of this model is its simplicity: The probability

to observe a negative, neutral, or positive edge between nodes i and j solely depends on the

block memberships of the involved nodes. This dependence structure is not able to capture

foundational theories about signed networks, such as the structural balance theory.

3 Exponential Random Graph Model for Signed Net-

works under Local Dependence

Since the assumption of global dependence among edges is generally infeasible for large

networks, both from a modeling and interpretational perspective, it seems more plausible

that edge dependencies are local, meaning that they depend only on a subset of other edges.

This is because dependence implies awareness or knowledge of the activities of other nodes.

It is therefore reasonable to assume that this knowledge exists only about nodes within

the same block, and not across the entire network. This structure is captured through a

latent block membership Z, which groups nodes into unobserved communities that govern

local interaction patterns. Given this block structure Z, the probability of observing a

network y can be decomposed into two components: one that captures potentially complex

dependencies within each block, and another that describes interactions between blocks that

are independent of each other. This decomposition is attractive not only because it reflects

how many real-world networks are organized, but also because it reduces computational

complexity. By limiting complex dependencies to within-block interactions, and by allowing

parallel computation, since blocks are conditionally independent given Z.

The overall probability of observing the network y, given the block structure z, is
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the product of the probabilities for the within-block and between-block sub-networks, the

former running over all individual blocks, the latter over all unordered pairs of distinct

blocks. This leads to the following expression for the network y ∈ Y :

Pθ (Y = y | Z = z) =

(
K∏
k=1

Pθk,k (Yk,k = yk,k | Z = z)

)

×

(∏
k<l

Pθk,l (Yk,l = yk,l | Z = z)

)
,

(3)

where θ := vec(θ1,1, . . . ,θK,K ,θ1,2, . . . ,θK−1,K) denotes the vector of both between-block

and within-block parameters with vec defining a function that stacks its arguments verti-

cally. Unlike with stochastic block models, this model does not assume that edges within

and between blocks are independent. Rather, only the independence of between block edges

is guaranteed, while within block edges can be strongly dependent.

For nodes within the same block k, the probability of observing the sub-network yk,k is

given by a complex signed ERGM:

Pθk,k (Yk,k = yk,k | Z = z) =
exp(θ⊤

k,k s(yk,k))

κ(θk,k)
, (4)

where θk,k ∈ Rp denotes the vector of within-block parameters for block k, and s : Yk,k →

Rp is a function calculating the sufficient statistics. This function includes both dyad-

independent and dyad-dependent variables, since we assume that nodes are aware of the

activities within their block. The number of sufficient statistics used to model within-block

networks pw ∈ N is assumed to be constant across blocks.

The between-block edges are characterized by a signed SBM, where the probability of

observing the sub-network yk,l, conditional on the block assignments z, is given by:

Pθk,l (Yk,l = yk,l | Z = z) =
exp

(
θ⊤
k,lh(yk,l)

)
κ(θk,l)

,

with θk,l ∈ Rq denoting the between-block parameters. The sufficient statistics h : Yk,l →

Rq (with l ̸= k) include only dyad-independent variables, since dyad-dependency would
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require knowledge of the activity in other blocks:

hk,l(yk,l) =
∑
i,j

zi,kzj,l (I(yi,j = “− ”)xi,j,− + I(yi,j = “ + ”)xi,j,+) ,

where xi,j,+ and xi,j,− are covariate vectors associated with positive and negative edges,

respectively. Because only dyad-independent terms are included, the normalizing constant

becomes tractable and factorizes over dyads:

κk,l(θk,l) =
∏

i,j:zi,kzj,l=1

(
1 + exp(x⊤

i,j,+θk,l,+) + exp(x⊤
i,j,−θk,l,−)

)
.

In practice, we are interested in parsimonious models to ease interpretation, hence

letting θk,l vary freely over k, l = 1, . . . , K is unreasonable. Extending Slaughter and

Koehly (2016) and Krivitsky et al. (2023), we represent different homogeneity assumptions

on these coefficients by linear combinations of population-level coefficients for within and

between blocks, βw ∈ Rs×p and βb ∈ Rt×q, and block-specific covariates, vk ∈ Rs and

uk,l ∈ Rt:

θk,k := (v⊤
k βw)

⊤ and θk,l := (u⊤
k,lβb)

⊤. (5)

The model would constitute a curved ERGM with local dependence if the relationship

between the population-level coefficients and the block-specific covariates in equation (5)

were non-linear (Hunter and and Handcock, 2006). Block-specific covariates vk, such as

block size Nk or log(Nk), further enable size-dependent parametrizations (see, e.g., Butts

and and Almquist, 2015 and Krivitsky et al., 2011). Larger blocks will typically have a

lower density, however using non-size dependent parameters would lead to preservation of

the density. Let βw,a,b, θk,k,a , and vk,b denote the (a, b)th entry of βw, the within-block

effect of the ath statistic in θk,k, and value of the bth entry of vi, respectively. Then θk,k,b is

given by βw,a,b vk and βw,a,b can be interpreted as the increase of θk,k,b when vk,b is increase

by one unit. Covariates uk,l typically only include a constant, dummy variables for specific

pairs of blocks, or functions of vk and vl.
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Example 1: Signed SBM. To start edges yi,j are assumed to be conditionally indepen-

dent given the block memberships in Section 2. Let I(yi,j = y) = ai,j,y be an indicator for

observing edge value y ∈ {“+”, “−”} between node i and j. The vector of sufficient statis-

tics for the within-block model s(yk,k) ∈ R2 and the between-block model h(yk,l) ∈ R2 then

include the count of positive and negative edges for each block or block pair, respectively.

Define the edge terms as:

Edges+(y) :=
∑
i<j

ai,j,+, Edges−(y) :=
∑
i<j

ai,j,−.

Then the vectors of sufficient statistics is given by:

s(yk,k) = h(yk,l) =
(
Edges+(·), Edges−(·)

)⊤
.

These statistics correspond to parameters θk,l = (θk,l,+, θk,l,−), where we define θk,l,0 = 0.

The multinomial probabilities coming up in (2) are then recovered as follows:

πk,l(y) =
exp(θk,l,y)∑

y⋆∈S

exp(θk,l,y⋆)
.

Thus, θk,l,+ and θk,l,− represent log-odds of observing a positive and negative edge between

blocks k and l compared to observing no edge. In this form, each s(yk,k) and h(yk,l)

acts like an intercept term: it aggregates the number of edges of a particular sign, and

its corresponding parameter controls the baseline probability of that edge type appearing

between nodes with the given block memberships. For the within-block model, we can also

represent this in the linear predictor structure from Equation (5). In this case each vk ∈ RK

is a one-hot vector with a 1 in the kth position and 0 elsewhere. Similarly, for the between-

block model, uk,l ∈ RK is a vector with 1s in position k and l. To reduce model complexity

and avoid estimating block-pair-specific parameters, we assume homogeneous parameters

across all between-block pairs. In this case, we define uk,l = 1, so al θk,l = βb ∈ R1×2 In
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the following examples, this parameter vector remains fixed, as no dyad-independent terms

are added to the between-block model.

Example 2: Signed Model with Triadic Terms. To relax the assumption of the

SSBM that edges within and between blocks are independent, we can incorporate triadic

terms that reflect structural balance theory. Specifically, the model may include triadic

configurations reflecting the principles “friend of my friend is my friend” and “enemy of my

enemy is my friend” (Fritz et al., 2025). However, the inclusion of triadic terms often leads

to model degeneracy (Schweinberger, 2011). Schweinberger and Stewart (2020) showed

that defining triadic statistics by:

Triad+++(yk,k) :=
∑
i<j

ai,j,+ I

(∑
h̸=i,j

ai,h,+ ah,j,+ > 0

)
,

Triad+−−(yk,k) :=
∑
i<j

ai,j,+ I

(∑
h̸=i,j

ai,h,− ah,j,− > 0

)

yields better-behaved distributions. The vector of sufficient statistics for the within-block

model is given by:

s(yk,k) =
(
Edges+(yk,k), Edges

−(yk,k), Triad
+++(yk,k), Triad

+−−(yk,k)
)⊤

,

where the triadic terms count the number of positive edges that are connected through at

least one mutual friend, in the case of Triad+++(yk,k), or at least one mutual enemy, in the

case of Triad+−−(yk,k).

Example 3: Signed Model with Structural Terms. To capture more complex local

structures beyond count variables such as edge and triad counts, we include geometrically

weighted positive/negative degree and edgewise shared partner statistics, specifically the

geometrically weighted “enemy of my enemy is my friend” triad. These geometrically

weighted statistics reduce the risk of model degeneracy by reducing the weight of high

degree nodes or high shared partner counts, thereby improving model stability. The decay
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parameter ω controls this discounting: smaller values of ω place more weight on higher-

degree nodes or triads with many shared partners, while larger values of ω reduce their

influence. For a more detailed overview of geometrically weighted statistics, see Hunter

(2007).

Define the geometrically weighted positive degree statistic as:

GWDy(yk,k, ω) := exp(ω)

Nk−1∑
d=1

(
1− (1− exp(−ω))d

)
degyk,d,

where

degyk,d :=

Nk∑
i=1

I

(∑
j ̸=i

ai,j,y = d

)
counts nodes in block k with positive or negative degree exactly d.

Define the geometrically weighted edgewise shared partner statistic as:

GWESEy(yk,k, ω) := exp(ω)

Nk−2∑
d=1

(
1− (1− exp(−ω))d

)
ESEy

d,

GWESFy(yk,k, ω) := exp(ω)

Nk−2∑
d=1

(
1− (1− exp(−ω))d

)
ESFy

d,

where

ESEy
d :=

∑
i<j

ai,j,yI

(∑
h̸=i,j

ai,h,−aj,h,− = d

)
, ESFy

d :=
∑
i<j

ai,j,yI

(∑
h̸=i,j

ai,h,+aj,h,+ = d

)
.

Here, ESEy
d counts edges of sign y sharing exactly d common enemies, and ESFy

d counts

edges of sign y sharing exactly d common friends.

The vector of sufficient statistics for the within-block model is then defined as:

s(yk,k) = (Edges+(yk,k), Edges
−(yk,k), GWD+(yk,k, ω),

GWD−(yk,k, ω), GWESE+(yk,k, ω))
⊤.

4 Scalable Estimation

The block allocation Z, a multinomial variable taking values in {1, . . . , K}, is often un-

observed and must be learned from the observed network y. Assuming that the number
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of blocks K is fixed, we model Z under a multinomial prior with relative group-sizes

γ1, . . . , γK :

Zi
iid∼ Multinomial(1; γ1, . . . , γK), (6)

following the practice for SSBMs (Li et al., 2023). Combining (6) with the conditional

model Y | Z = z (defined in (3)) yields a latent variable model (see, David et al., 2011 for

an introduction to the field). The log-likelihood for parameters θ and γ is

ℓ(θ,γ) = log
(
Pθ,γ(Y = y)

)
= log

(∑
z∈Z

Pθ(Y = y | Z = z)Pγ(Z = z)

)
(7)

where Z := {1, . . . , K}N is the discrete space of block assignments.

Plugging (3) in to ℓ(θ,γ), shows that direct maximization of (7) would involve the

evaluation of nested intractable sums: the normalization constants of the within networks

(4) and the discrete space of block assignments, both of which grow superexponentially

with N .

To address this, we introduce an auxiliary distribution A over Z and apply Jensen’s

inequality:

ℓ(θ,γ) ≥ EA

(
log
(
Pθ(Y = y | Z = z)Pγ(Z = z)

))
− EA(logA(Z)) =: LB(A,θ,γ).

(8)

Here, LB(A,θ,γ) is known as the evidence lower bound, which is a functional of A and the

model parameters. The expectation with respect to A over a function f is EA(f(Z)) :=∑
z∈Z A(z)f(z). We optimize LB(A,θ,γ) with respect to A,θ, and γ by alternating block

coordinate ascent:

Step 1: Update A to minimize LB(A,θ,γ) for fixed θ and γ;

Step 2: Update θ and γ to minimize LB(A,θ,γ) for fixed A.

14



If z is observed or can be reasonably derived from covariate information, only Step 2 is

needed.

The optimal solution in Step 1 is A(Z) = P(Z = z | Y = y), which does not admit

a closed-form expression (Matias and Robin, 2014). For SBMs of moderate size, Gibbs

sampling based on the full conditional distributions Zi | Z1, ..., Zi−1, Zi+1, ..., ZN can be

employed to approximate P(Z = z | Y = y) (Nowicki and and Snijders, 2001). How-

ever, for larger networks, as considered in this paper, variational methods offer scalable

approximations. For this approach, we restrict A to a tractable family of distributions

parametrized by α and approximate P(Z = z | Y = y) ≈ Aα(z), where Aα(z) minimizes

the Kullback-Leibler divergence to P(Z = z | Y = y). An explicit form of this variational

family is provided in Section 4.2.

Still, the dependence of within-block networks (4) inhibits adaption to our setting. In

Section 4.1, we adapt the result of Babkin et al. (2020) to signed networks showing that

under some conditions the probability (3) can be approximated by the probability of a

SSBM, mentioned in Section 2 and Example 1. This result justifies the use scalable opti-

mization methods originally developed for SBMs. More concretely, in Section 4.2 we adapt

the approach of Vu et al. (2013) based on MM Steps to the signed setting. After conver-

gence, a point estimate ẑ is derived Section 4.3 discusses the estimation of θ conditional

on Z = ẑ. Section 4.4 proposes methods to incorporate uncertainty in Z neglected by this

deterministic assignment.

4.1 Signed Stochastic Block Model Approximation

For any model specification, we recover the Signed Stochastic Block Model (SSBM), as

shown in Example 1, by setting all parameters in model (4) corresponding to dyad-dependent
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statistics (e.g., transitivity) to zero. Note that the sufficient statistics in (5) are already

dyad-independent by definition. Therefore, the approximation of the probability of our

model by the probability of a SSBM only accrues errors for within-block networks. As N

and K grow, our joint probability will then be increasingly dominated by terms relating to

between-block probabilities, provided single blocks are not too large. This offers a heuristic

justification for why the SSBM provides a good approximation in large populations.

Accordingly, we decompose the within-block parameters of the kth block

θk,k = vec(θ ̸⊥
k,k,θ

⊥
k,k), where θ ̸⊥

k,k relates to statistics inducing dependence and θ⊥
k,k to

statistics implying independence. Setting θ ̸⊥
k,k = 0, we define θSBM

k,k = vec(0,θ⊥
k,k) for all

k ∈ {1, . . . , K} and θSBM := vec(θSBM
1,1 , . . . ,θSBM

K,K ,θ1,2, . . . ,θK−1,K). With this notation,

substituting θ by θSBM in (3), defines the corresponding nested SSBM. Denote by m(z)

the size of the largest block in block allocation (z) ∈ Z and let d : Y → Y be the Hamming

distance between two signed networks y1,y2 ∈ Y :

d (y1,y2) =
∑
i<j

I(y1,i,j ̸= y2,i,j),

where I denotes the indicator function. We require the following conditions:

Condition 1: Smoothness of s. A constant c > 0 exists such that for all θ ∈ Θ

and all y1,y2 ∈ Y ,

|⟨θ, s(y1)− s(y2)⟩| ≤ c d(y1,y2)m(z) logN.

Condition 2: Smoothness of θ. A constant c > 0 exists such that for all

θk,l;1,θk,l;2 ∈ Θk,l and all z ∈ Z,

|⟨θk,l;1 − θk,l;2,E(sk,l(Y))⟩| ≤ c |θk,l;1 − θk,l;2|m(z)2 logN.
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All sufficient statistics considered in this paper satisfy Assumptions 1 and 2. Following

Theorem 2 from Babkin et al. (2020), the full conditional probability Pθ(Y = y | Z = z)

can be then approximated with θSBM as follows

Pθ(Y = y | Z = z) ≈ PθSBM(Y = y | Z = z). (9)

4.2 Variational Approximation based on MM Updates

Supported by this result, we substitute Pθ(Y = y | Z = z) in (8) by the probability of a

SSBM, which simplifies the optimization in Steps 1 and 2 outlined above. We assume a

mean-field variational family for the class of discrete distributions characterized, implying

that the joint distribution of Z factorizes across nodes:

Aα(z) =
N∏
i=1

Aαi,i(zi),

where Aαi,i denotes the density of a categorical distribution parametrized by αi = (αi,k) ∈

[0, 1]K with
∑K

k=1 αi,k = 1. The variational parameters that characterize the class of

distribution approximating P(Z = z | Y = y) are α = (α1, . . . ,αN) ∈ [0, 1]K×N .

The lower bound LB(A,θ,γ) defined in (8) is then a function of α:

LB(α,θ,γ) =
∑
i<j

K∑
k=1

K∑
l=1

αi,kαj,l log pk,l(yi,j) +
N∑
i=1

K∑
k=1

αi,k(log γk − logαi,k),

where pk,l(y) = PθSBM(Yi,j = y | Zi = k, Zj = l) denotes the density evaluated at y of an

edge between nodes i and j, with actor i in block k and actor j in block l under the SSBM

approximation described in Section 4.1. The dependence of pk,l(y) on the parameter θSBM

is omitted for brevity.

Although one can directly maximize the lower bound LB(α,θ,γ) with respect to α us-

ing iterative fixed-point methods (see, e.g., Daudin et al., 2008), a more scalable and robust
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approach employs Minorization-Maximization (MM) steps (Vu et al., 2013). Specifically,

we introduce the surrogate function Q(γ(t),θ(t);α(t),α):

Q(γ(t),θ(t);α(t),α) =
N∑
i=1

K∑
k=1

Ai,k(y,α
(t),θ(t))α2

i,k +Bi,k(γ
(t),α(t))αi,k (10)

which is quadratic in α and hence easier to maximize. The quadratic term is defined as

Ai,k(y,α
(t),θ(t)) :=

Ω
(t)
i,k(y,α

(t),θ(t))

α
(t)
i,k

− 1

α
(t)
i,k

,

and the linear term as

Bi,k(γ
(t),α(t)) := log γ

(t)
k − logα

(t)
i,k + 1,

where

Ω
(t)
i,k(y,α

(t),θ(t)) :=
N∑
j ̸=i

K∑
l=1

α
(t)
j,l log p

(t)
k,l(yi,j).

This surrogate function minorizes LB(α,θ,γ) in α(t) and has thus the following two prop-

erties:

Q(γ(t),θ(t),α(t);α) ≤ LB(α,γ(t),θ(t)) for all α ∈ [0, 1]K×N

Q(γ(t),θ(t),α(t);α(t)) = LB(α(t),γ(t),θ(t)).

Consequently, increasing Q(γ(t),θ(t);α(t),α) with respect to α guarantees an increase in

LB(α,θ,γ). Since Q is a quadratic function of α, scalable and robust optimization meth-

ods are available to efficiently perform Step 1 (see Stefanov, 2004). A complete derivation

of Equation (10) and details on expressing all terms via matrix multiplication for compu-

tational efficiency are provided in Supplement B.1 and B.2, respectively. Conditional on

α(t), the updates of θSBM and γ are available in closed forms in Step 2, which are provided

in the Supplement B.3.

4.3 Parameter Step with known Blocks

From the converged lock membership probabilities α̂, Babkin et al. (2020) assign each

node deterministically to the block with the highest posterior probability to obtain the

18



block membership vector z

ẑ =

(
argmax
k∈{1,...,K}

αi,k

)N

i=1

.

Given this block membership vector, we can estimate the model parameters θ. Since (5)

expresses θ as a function of the population-level parameters β = (βw,βb), we optimize

over these lower-dimensional parameters rather than the full set of block- or block-pair-

specific coefficients θk,k and θk,l. Accordingly, we reparametrize (3) using the coefficients

βw,vec := vec(βw) and βb,vec := vec(βb), together with the block-specific sufficient statistics

sk : yk,k 7→ vk ⊗ s(yk,k), hk,l : yk,l 7→ uk,l ⊗ h(yk,l). (11)

The term a ⊗ b denotes the Kronecker product of vectors a ∈ Rm and b ∈ Rn. In the

following, we focus on estimating the within-block model parameter βw,vec. The method

applies analogously to βb,vec. While both MCMC-based maximum likelihood (Hunter and

and Handcock, 2006) and maximum pseudo-likelihood methods (MPLE, Strauss and and

Ikeda, 1990) can be used to estimate the parameters in the second step, MPLE is generally

better suited for large networks due to its computational efficiency and scalability. If dyadic

independence holds, both approaches coincide.

The conditional probability of an edge between nodes i and j with zi = zj = k to be

y ∈ S given the rest of the network Y(−ij) and βw,vec is

Pβw,vec(Yi,j = y | Y(−ij) = y(−ij), zi = zj = k) =
exp

(
β⊤
w,vecsk(y

y
i,j)
)∑

y∗

exp
(
β⊤
w,vecsk(y

y∗

i,j)
) .

Here, sk from (11) is evaluated at the network configuration yy
i,j, where the value of edge

yi,j is set to y, while all other edge values remain fixed as observed.

With ∆0→+
i,j,k (y) and ∆0→−

i,j,k (y) being the change in the reparametrized sufficient statistics

given in (11) after changing the edge value yi,j from “0” to “ + ” or “− ”, respectively, we

can express the relative log odds of observing Yi,j to be “ + ” abs “ − ” instead of “0”,
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conditional on zi = zj = k:

log

(
Pβw,vec(Yi,j = “ + ” | Y(−ij) = y(−ij), zi = zj = k)

Pβw,vec(Yi,j = “0” | Y(−ij) = y(−ij), zi = zj = k)

)
= β⊤

w,vec∆
0→+
i,j,k (y)

log

(
Pβw,vec(Yi,j = “− ” | Y(−ij) = y(−ij), zi = zj = k)

Pβw,vec(Yi,j = “0” | Y(−ij) = y(−ij), z)

)
= β⊤

w,vec∆
0→−
i,j,k (y).

The log-likelihood function is then defined as

ℓ(βw,vec) =
∑
i<j

(
β⊤
w,vec∆

0→yi,j
i,j,k (y)− log

∑
y

exp
(
β⊤
w,vec∆

0→y
i,j,k (y)

))
. (12)

Newton Raphson algorithms are commonly used to maximize (12) based on (13) with the

following gradient and negative Hessian:

u(βw,vec) =
∂

∂βw,vec

ℓ(βw,vec), J(βw,vec) = − ∂

∂βw,vec

u(βw,vec). (13)

4.4 Uncertainty Quantification

To account for the uncertainty in block allocations, we propose to sample T times from a

multinomial distribution for each node, using their individual block membership probabil-

ities αi. For each t ∈ {1, . . . , T} we sample Z(t), where:

Z
(t)
i ∼ Multinomial(1,αi), for i = 1, . . . , N

Given the previously sampled block memberships, z(1), . . . ,z(T ), the parameters of the

model,(β
(1)
w,vec,Σ

(1)), . . . , (β
(T )
w,vec,Σ

(T )), are re-estimate for each sampled partition to obtain

valid uncertainty quantification. The estimated parameters β
(t)
w,vec are pooled as follows

E(βw,vec) = βw,vec =
1

T

T∑
t=1

β̂(t)
w,vec,

Var(βw,vec) =
1

T

(
T∑
t=1

Σ̂
(t)

)
+

1

T − 1

T∑
t=1

(
β̂(t)
w,vec − βw,vec

)(
β̂(t)
w,vec − βw,vec

)⊤
.

To assess model fit and enable model selection under this uncertainty quantification, we

evaluate the AIC for each sampled partition. By extending the bridge sampler introduced
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(a) Block recovery performance in Simulation

Study 1, measured by Yule’s ϕ coefficient for

varying numbers of blocks (K = 25, 50, 75, 100)

and network sizes (N = 1,250 to 5,000).

(b) Effect of between-block sparsity on block

recovery in Simulation Study 2. Yule’s ϕ coef-

ficient is shown for different values of λ, which

controls the density of between-block edges.

Figure 1: Block recovery performance across different simulation conditions. Higher ϕ

values indicate better agreement with the true block structure.

in Hunter and and Handcock (2006), we compute the AIC for each sample and report the

average across all T partitions. Standard errors Σ̂
(t)

were computed using the Godambe

information matrix. Details are provided in the Supplement A.

5 Simulation Study

This section evaluates the performance of the proposed estimation procedure in both steps.

For the evaluation of the parameter recovery in Step 2, we use MPLE as they are more

scalable than MCMC-based methods. To evaluate the block recovery we use the variational
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Figure 2: Maximum pseudo-likelihood estimates for within-block parameters in Simulation

Study 1. Results are based on known block memberships and used to assess parameter

recovery accuracy across increasing network sizes.

approach described in Section 4 and compare it to the spectral clustering described in Lei

and Rinaldo (2015), for which we treat the network as a binary one. The block recovery

will be assessed using the Yule’s ϕ-coefficient:

Φ(z∗, z) =
n0,0n1,1 − n0,1n1,0√

(n0,0 + n0,1)(n1,0 + n1,1)(n0,0 + n1,0)(n0,1 + n1,1)
,

where n0,0 represents the number of node pairs assigned to different blocks, while n1,1 counts

the pairs assigned to the same block in both. The sum n0,1 + n1,0 captures where both

assignments differ. The coefficient is 1 if z⋆ and z fully agree, and is invariant to block

labeling.

Simulation Study 1: Block & Parameter Recovery. We simulate networks using the

model specification detailed in Example 3 in Section 3, which incorporates geometrically

weighted degrees (GWD+/−) and edgewise shared enemies (GWESE+) statistics. The
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networks are drawn using MCMC methods, specifically a Metropolis-Hastings sampler

based on the joint distribution, with proposals evaluated using the conditional distribution

derived above.

The number of blocks K each of size 50 on a grid, K ∈ {25, 50, 75, 100}, resulting

in networks of size N ∈ {1,250, 2,500, 3,750, 5,000}. The within-block coefficients are

set to θk,k = (−2, 0.5. − 3,−0.5, 0.7)⊤ corresponding to the sufficient statistics Edges+,

GWD+, Edges−, GWD−, and GWESE+, respectively. The between-block coefficients,

corresponding to positive and negative edges, are set to θk,l = (−1.5,−0.5)⊤ log(N). The

log-scaling with N allows for sparsity in the between-block networks as the total number

of nodes increases.

These parameter values are chosen to ensure that the simulated networks meet two

criteria. First, the networks exhibit a clear block structure with denser connectivity within

blocks than between blocks, which is critical for successful block recovery. Second, the net-

works resemble real-world signed social networks: the positive GWD+ coefficient encour-

ages the formation of nodes with high positive degree, inducing centralization, while the

negative GWD− coefficient suppresses high negative degree nodes. The positive GWESE+

coefficient reflects structural balance theory, favoring balanced triads where the “enemy of

my enemy is my friend”.

The generated networks are used to test block recovery by comparing them to binary

spectral clustering (see Figure 1a) and to assess parameter recovery using MPLE when

true block membership is known (see Figure 2). Our estimation method consistently out-

performs spectral clustering in recovering block structure and accurately estimates model

coefficients across different numbers of blocks.

23



Simulation Study 2: Sparsity. We conduct a simulation study to evaluate block recov-

ery under varying levels of sparsity. The considered networks consist ofK = 25 blocks, each

containing 50 nodes, resulting in a total of N = 1,250 nodes. The within-block coefficients

remain the same as in the previous scenario. To assess how block recovery is influenced

by between-block sparsity, we set the coefficients for positive and negative between-block

edges to θk,k = (−1.5,−0.5)⊤λ log(N), where λ varies from 0.5 to 1. The parameter λ

controls the density of the between-block edges: with increasing λ, the sparsity between

blocks increases, implying fewer connections between blocks. Figure 1b shows that the

block recovery worsens as the number of between-block edges increases (i.e., when λ de-

creases). This aligns with our expectations as the block structure becomes less pronounced

in such regimes.

6 Wikipedia Network

We demonstrate the proposed model in an application to a network of Wikipedia edi-

tors who contribute to and refine content across a range of topics. Wikipedia is a free,

community-edited online encyclopedia that has been the subject of numerous prior studies

(Brandes et al., 2009; Iba et al., 2010). A subset of these editors can be considered experts

in specific fields, as they focus their contributions on a limited number of Wikipedia pages

within their area of expertise. These editors typically exhibit limited awareness of edits

or interactions occurring outside their domain. Such behavior gives rise to block structure

and localized dependence within the network, where each block corresponds to a distinct

area of knowledge.

The edges in the network were constructed in a manner similar to the approach of

Lerner and Lomi (2017): a negative edge between users i and j is added if either user
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Table 1: Network statistics for the Wikipedia editor network, including the number of

nodes, positive and negative edges, and frequencies of triads: all-positive (“friend of my

friend is my friend”), all-negative, two positive and one negative, and one positive and two

negative (“enemy of my enemy is my friend”).

Nodes Edges + Edges −
+

+

+ −

−

− + +

−

+ −

−

2,115 875 2,656 78 738 272 934

undoes or deletes the other’s work, and a positive edge if either user redoes the other’s

work. The raw dataset includes data from more than 10,000 articles and is described in

detail in Lerner and Lomi (2019).

To extract our subsample of experts we filtered the data from the full network of

1,634,189 editors. First, to ensure that we focus on meaningful contributions, we included

only users who added at least 100 words per page. We, thereby, distinguish between

users who primarily add substantive new content, likely indicating expertise on specific

topics, from those who make frequent but less substantive edits, such as corrections or

anti-vandalism activities. Second, we excluded users who contributed to more than 10

pages, as this typically indicates bots or users focused on maintenance rather than topic-

specific contributions. From the remaining users, we selected 50 pages whose names are

provided in Table C. This procedure resulted in an undirected network of N = 2,115 nodes.

6.1 Model Specification

We apply the two-stage estimation approach to this network. For this, we assume that each

page is an individual block, resulting in 50 blocks in the network. Note, however, that there
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Figure 3: Out-of-sample cross-validation results for the Full Triad model including all tri-

adic terms (Edges+/−, GWD+/−, and all GWESP). The distribution of simulated statistics

across 100 replications is compared against the observed statistics for each block.

is no ground truth block membership for the nodes, only for the edges, so it is possible

that the number of blocks is less than 50 in the case where two pages contain a similar

subset of users. Conversely, the number of blocks could be higher than 50 if a single page

includes heterogeneous sections that correspond to distinct user groups. That being said,

the Yule’s phi coefficient between the estimated block membership and the page an editor

contributed to most is 0.69, indicating a moderately strong alignment between the assumed

and inferred structures. To account for potential misclassifications in the inferred structure,

we apply an uncertainty correction to adjust for estimation error in block assignments.

To decide which model specifications are best suited to describe the observed Wikipedia
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network, we adapt the out-of-sample cross-validation for multi-level networks used by Stew-

art et al. (2019) to our setting. We remove one block and estimate a model for the remaining

49 blocks. The resulting model coefficients are used to individually simulate the previously

excluded block 100 times. To best capture signed network structure, we plot the distribu-

tion of the observed network statistics against the simulated statistics: degree distributions

(positive and negative), edgewise shared friends (ESF+ and ESF−), and edgewise shared

enemies (ESE+ and ESE−). In total, we tested four model specifications of increasing

complexity, which can be seen in Table 2. The decay term for the geometrically weighted

degrees is set to .2, and for the geometrically weighted shared partners (GWESP), it is set

to 0, reducing them to a count statistic of the given triad, as introduced in Example 2 in

Section 3. The vector of sufficient statistic for the “Full Triad” model is thus given by:

s(yk,k) = (Edges+(yk,k), Edges
−(yk,k), GWD+(yk,k, 0.2), GWD−(yk,k, 0.2),

GWESE+(yk,k, 0), GWESF+(yk,k, 0), GWESE−(yk,k, 0),

GWESF+(yk,k, 0))
⊤.

The results of the out-of-sample cross-validation, shown in Figure 3 and Supplement C.1,

suggest that the Full Triad model, including edges, GWD and all GWESP terms, is better

equipped to describe the Wikipedia network.

6.2 Results

As described in Section 4, we sample 100 times from the block membership probability to

account for the uncertainty within latent block memberships. The results of the second step

estimation can be found in Table 2. Standard errors were estimated using the Godambe

matrix based on 100 simulations.

The edges terms are modeled as a function of block size log(Nk). The terms Edges+

and Edges− represent the intercepts, which alone are not directly interpretable, as they
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Table 2: Estimated within-block parameters with uncertainty correction (T = 100). Coef.

indicates the estimated parameter, and SE is the associated standard error, based on the

estimated Godambe information matrix, using 100 simulations per block. Models compared

are: I (Independent), I+D (Degree), I+D+PT (Partial Triad), and I+D+FT (Full Triad).

∆AIC values indicate the difference in AIC relative to the independent model.

Independent Degree Partial Triad Full Triad

Parameters Coef. SE Coef. SE Coef. SE Coef. SE

Edges+ .543 .268 2.098 .207 1.283 .172 .475 .185

× log(Nk) −1.122 .058 −1.160 .042 −1.018 .034 −.932 .036

Edges− .688 .225 1.941 .189 1.700 .168 1.167 .187

× log(Nk) −.950 .048 −1.034 .038 −.980 .034 −.904 .033

GWD+ −1.106 .065 −1.291 .055 −1.076 .060

GWD− −.945 .051 −1.110 .056 −1.032 .066

GWESE+ 1.334 .061 1.422 .047

GWESF+ .224 .029

GWESE− .126 .028

GWESF− .688 .035

∆AIC 0 855 1,296 1,404

would only apply to hypothetical blocks of size 1. Instead, the combination of intercept

and block size effect reflects the expected edge probability within a given block. Across

all models, the coefficients for positive edges are lower than for negative edges, indicating

that negative edges are more frequent within blocks. The consistently negative coefficients

for the block size terms demonstrates that larger blocks tend to be sparser, with edge
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probability decreasing as block size increases. This reflects the fact that the number of

possible edges grows quadratically, while the number of actual edges grows at a slower

pace. Adding GWD terms reduces the edge coefficients, suggesting that some variation in

edge probability is explained by degree structure. The GWD coefficients are negative for

both edge types in all models, indicating a general tendency against high-degree nodes. The

effect is stronger for positive edges, implying that these edges are more evenly distributed

and less likely to form hubs. As expected from structural balance theory, the GWESE+

terms have positive and statistically significant coefficients in both the Full and Partial

Triad model. This means that users are more likely to restore the work of another user

if they share a common enemy. While still positive and significant, the other balanced

triad represented by GWESF+ is closer to zero, similar to the unbalanced triad GWESE−.

However, the term GWESF− is significantly larger than GWESF+, which is not consistent

with structural balance theory. This discrepancy suggests that structural balance theory

may not fully apply to this expert network, For instance, undoing a friend-of-a-friend’s

contribution could be more common due to task-related disagreements rather than group-

based antagonism. Overall, the more complex models capture important network features,

such as triadic relationships, and this is reflected in their lower AIC values, indicating

better model fit despite increased complexity.

Our Wikipedia network analysis of thousands of subject matter experts serves an ex-

ample where global dependence assumption seems unrealistic. Through the use of local

dependence, we found some adherence to the behavioral norms predicted by structural

balance theory. Specifically, users who have an enemy in common are more likely to restore

each other’s contributions. This finding is consistent with Lerner and Lomi (2019).

To validate the results in Table 2, we conducted a conventional ERGM goodness-of-fit
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analysis following the method outlined by Hunter et al. (2008). The results are shown in

Supplement C.2.

7 Conclusion

Our proposed model for signed networks combines the strengths of stochastic block models

and exponential random graph models, while being scalable to thousands of nodes. There

are several directions for extending the proposed model. First, we assumed that the number

of blocks, K, was known a priori. In practice, this may not hold, and methods to infer K

from data would enhance model flexibility (Saldaña et al., 2017). Second, the assumption

of nonoverlapping community structure could be relaxed by allowing nodes to belong to

multiple blocks, as in mixed-membership models (see, e.g., Latouche et al., 2011). This

would accommodate for more realistic block structures. Third, the observed degree het-

erogeneity in the Wikipedia network highlights the need for a degree-corrected stochastic

block model for signed networks.
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A Godambe Information

When using MPLE, the standard errors Σ̂
(t)

obtained from a logistic regression are, as

Strauss and and Ikeda (1990) and ? pointed out, inappropriate because dyadic indepen-

dence is assumed. ? suggested a more appropriate method for estimating MPLE standard

errors by calculating the Godambe matrix ?. The Godambe matrix is

G(θ(t)) = J(θ(t))−1V (θ(t))J(θ(t))−1,

where J(θ(t)) is defined in (13) and V (θ(t)) := Var(u(θ(t))) is called the variability matrix.

However, V (θ(t)) cannot be directly computed and must be approximated by simulat-

ing R networks using MCMC procedures and calculating the vector of first derivatives of

the pseudo-likelihood function u1(θ), . . . ,uR(θ) for each of the simulated network. The

1



variability matrix is then approximated by

V̂ (θ(t)) =
1

R− 1

R∑
r=1

(
ur(θ

(t))− u(θ(t))
) (

ur(θ
(t))− u(θ(t))

)
,

where u(θ(t)) := 1/R
∑R

r=1 ur(θ
(t)) denotes the sample mean of the score vectors.

B Computation

B.1 Surrogate Function

In order to detail how the updates of α are carried out using sparse matrix operations, we

introduce a surrogate function Q(γ(t),θ(t);α(t),α) that provides a tractable lower bound

that can be maximized iteratively and rearrange it as follows:

Q(γ(t),θ(t);α(t),α) =
∑
i<j

K∑
k=1

K∑
l=1

(
α2
i,k

α
(t)
j,l

2α
(t)
i,k

+ α2
j,l

α
(t)
i,k

2α
(t)
j,l

)
log pk,l(yi,j)

+
N∑
i=1

K∑
k=1

αi,k

(
log γ

(t)
k − logα

(t)
i,k −

αi,k

α
(t)
i,k

+ 1

)

=
N∑
i=1

K∑
k=1

Ω
(t)
i,k(y,α

(t),θ(t))

α
(t)
i,k

α
(t)
i,k +

N∑
i=1

K∑
k=1

αi,k

(
log γ

(t)
k − logα

(t)
i,k −

αi,k

α
(t)
i,k

+ 1

)

=
N∑
i=1

K∑
k=1

(
Ω

(t)
i,k(y,α

(t),θ(t))

α
(t)
i,k

− 1

α
(t)
i,k

)
α2
i,k +

(
log γ

(t)
k − logα

(t)
i,k + 1

)
αi,k

=
N∑
i=1

K∑
k=1

Ai,k(y,α
(t))α2

i,k +Bi,k(γ
(t),α(t))αi,k

with

Ω
(t)
i,k(y,α

(t),θ(t)) :=
N∑
j ̸=i

K∑
l=1

α
(t)
j,l log pk,l(yi,j),

the quadratic term

Ai,k(y,α
(t)) :=

Ω
(t)
i,k(y,α

(t),θ(t))

α
(t)
i,k

− 1

α
(t)
i,k

and the linear term of the quadratic problem

Bi,k(γ
(t),α(t)) := log γ

(t)
k − logα

(t)
i,k + 1.
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B.2 Sparse Matrix Multiplication

To update our estimate of α, we need to evaluate Ai,k(y,α
(t)) and Bi,k(γ

(t),α(t)), with

the former being the problematic part, giving us a complexity of O(N2K2). Therefore,

we decompose Ω
(t)
i,k(y,α

(t),θ(t)) into two parts: one when the network is completely empty,

i.e., yi,j = 0 for all i, j = 1, . . . , N , and the other capturing all dyads where yi,j ̸= 0, which

allows us to exploit the sparse nature of the network:

Ω
(t)
i,k(y,α

(t),θ(t)) :=
N∑
j ̸=i

K∑
l=1

α
(t)
j,l log p

(t)
k,l(yi,j)

=
N∑
j ̸=i

K∑
l=1

α
(t)
j,l log p

(t)
k,l(“0”) +

N∑
j ̸=i

I(yi,j = “ + ”)
K∑
l=1

α
(t)
j,l log

p
(t)
k,l(“ + ”)

p
(t)
k,l(“0”)

+
N∑
j ̸=i

I(yi,j = “− ”)
K∑
l=1

α
(t)
j,l log

p
(t)
k,l(“− ”)

p
(t)
k,l(“0”)

= Ω
(t)
i,k(0,α

(t)) + Λ
(t)
i,k(y,α

(t))

with

Λ
(t)
i,k(y,α

(t)) =
N∑
j ̸=i

I(yi,j = “ + ”)
K∑
l=1

α
(t)
j,l log

p
(t)
k,l(“ + ”)

p
(t)
k,l(“0”)

+
N∑
j ̸=i

I(yi,j = “− ”)
K∑
l=1

α
(t)
j,l log

p
(t)
k,l(“− ”)

p
(t)
k,l(“0”)

The first part, in which we assume the network is completely empty, can be computed

using matrix multiplication as follows:

Ω
(t)
i,k(0,α

(t) =
N∑
j ̸=i

K∑
l=1

α
(t)
j,l log p

(t)
k,l(“0”)

=
K∑
l=1


N∑
j=1

α
(t)
j,l︸ ︷︷ ︸

:=τ
(t)
l

−α
(t)
i,l

 log p
(t)
k,l(“0”)

=
K∑
l=1

(
τ
(t)
l − α

(t)
i,l

)
log p

(t)
k,l(“0”)
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Define

A
(t)
0

(N×K)

:=



τ
(t)
1 − α

(t)
1,1 τ

(t)
2 − α

(t)
1,2 . . . τ

(t)
K − α

(t)
1,K

τ
(t)
1 − α

(t)
2,1 τ

(t)
2 − α

(t)
2,2 . . . τ

(t)
K − α

(t)
2,K

...
...

. . .
...

τ
(t)
1 − α

(t)
N,1 τ

(t)
2 − α

(t)
N,2 . . . τ

(t)
K − α

(t)
N,K


and

P
(t)
0

(K×K)

:=



log p
(t)
1,1(“0”) log p

(t)
1,2(“0”) . . . log p

(t)
1,K(“0”)

log p
(t)
2,1(“0”) log p

(t)
2,2(“0”) . . . log p

(t)
2,K(“0”)

...
...

. . .
...

log p
(t)
K,1(“0”) log p

(t)
K,2(“0”) . . . log p

(t)
K,K(“0”)


.

Then Ω
(t)
i,k(0,α

(t),θ(t)) is given by the (i, k) entry of A
(t)
0 P

(t)
0 .

Next, we correct the error arising from the assumption of an entirely empty network by

calculating the term where this assumption does not apply:

Λ
(t)
i,k(y,α

(t)) =
N∑
j ̸=i

I(yi,j = “ + ”)
K∑
l=1

α
(t)
j,l log

p
(t)
k,l(“ + ”)

p
(t)
k,l(“0”)

+
N∑
j ̸=i

I(yi,j = “− ”)
K∑
l=1

α
(t)
j,l log

p
(t)
k,l(“− ”)

p
(t)
k,l(“0”)

Define

P
(t)
+

(K×K)

:=



log
p
(t)
11 (“ + ”)

p
(t)
11 (“0”)

log
p
(t)
12 (“ + ”)

p
(t)
12 (“0”)

. . . log
p
(t)
1K(“ + ”)

p
(t)
1K(“0”)

log
p
(t)
21 (“ + ”)

p
(t)
21 (“0”)

log
p
(t)
22 (“ + ”)

p
(t)
22 (“0”)

. . . log
p
(t)
2K(“ + ”)

p
(t)
2K(“0”)

...
...

. . .
...

log
p
(t)
K1(“ + ”)

p
(t)
K1(“0”)

log
p
(t)
K2(“ + ”)

p
(t)
K2(“0”)

. . . log
p
(t)
KK(“ + ”)

p
(t)
KK(“0”)


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and

P
(t)
−

(K×K)

:=



log
p
(t)
11 (“− ”)

p
(t)
11 (“0”)

log
p
(t)
12 (“− ”)

p
(t)
12 (“0”)

. . . log
p
(t)
1K(“− ”)

p
(t)
1K(“0”)

log
p
(t)
21 (“− ”)

p
(t)
21 (“0”)

log
p
(t)
22 (“− ”)

p
(t)
22 (“0”)

. . . log
p
(t)
2K(“− ”)

p
(t)
2K(“0”)

...
...

. . .
...

log
p
(t)
K1(“− ”)

p
(t)
K1(“0”)

log
p
(t)
K2(“− ”)

p
(t)
K2(“0”)

. . . log
p
(t)
KK(“− ”)

p
(t)
KK(“0”)


.

Then Λ
(t)
i,k(y,α

(t)) is given by the (i, k) entry of y+α
(t)P

(t)
+ + y−α

(t)P
(t)
− .

The extension of this methodology is straightforward and is demonstrated for the binary

case in ?.

B.3 Update Rules

In this section we provide details on the update rules of the estiamted block membership

probability α ∈ [0, 1]N×K for each node n for each block k, the prior block probability

γk ∈ [0, 1] for each block k and the edge probability πk,l ∈ [0, 1] between each pair of blocks

(k, l). These parameters are required for the first step of our two step estimation approach.

The updated rules of α, γk and πk,l(yi,j) follow

α(t+1) := argmax
α

Q(γ(t),θ(t),α(t);α)

γ
(t+1)
k :=

1

N

N∑
i=1

α
(t+1)
i,k , for k = 1, . . . , K

π
(t+1)
k,l (y) :=

∑
i<j

α
(t+1)
i,k α

(t+1)
j,l I(yi,j = y)∑

i<j

α
(t+1)
i,k α

(t+1)
j,l

for k, l = 1, . . . , K and y ∈ S := {“− ”, “0”, “ + ”}.
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Table 3: List of selected Wikipedia pages used to construct the editor network.

Wikipedia pages

Second Taranaki War Operation Nifty Package

Te Kooti’s War Box Hill Hawks Football Club

2011 Turkish sports corruption scandal Comparison of MUTCD-influenced traffic signs

Turkish Cup Calogero Vizzini

Navenby Partial pressure

Sunderland Echo Edmund Lyons, 1st Baron Lyons

2009-10 Ukrainian First League John Jervis, 1st Earl of St Vincent

2010 S.League Falcon’s Fury

King’s Cup Hogwarts Express (Universal Orlando Resort)

TT Pro League Francization of Brussels

Akhtar Hameed Khan Leonel Brizola

Ishaq Dar Glenda Farrell

Alias (season 5) List of Maverick episodes

List of The Listener episodes Herne Hill railway station

Argentina women’s national field hockey team LSWR N15 class

Australia national baseball team Hillsborough Area Regional Transit

Lena Park List of state highways in Arkansas

Battle of Flamborough Head The Verge

Uzalo Iveta Mukuchyan

Margaret (singer) Japanese aircraft carrier Hiryū

Principaĺıa Kulothunga Chola III

Northern Province, Sri Lanka Lee Purcell

New Guinea singing dog Page Two (EP)

Talbot Tagora Tatiana Troyanos

Little Thetford Temple of Eshmun

C Wikipedia Network

This appendix provides supplementary material for the Wikipedia network application

described in Section 6. It includes the list of the 50 selected Wikipedia pages, out-of-

sample cross-validation as well as in-sample goodness of fit plots and a visualization of the

full Wikipedia network. These materials support the evaluation of model fit and illustrate

the network structure underlying the analysis.
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C.1 Out-of-Sample Cross Validation

Figure 4: Comparison of out-of-sample cross-validation results for positive degree distribu-

tion. The distribution of simulated statistics across 100 replications is compared against

the observed statistics for each block. Models compared are: I (Independent), I+D (De-

gree), I+D+PT (Partial Triad), and I+D+FT (Full Triad).
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Figure 5: Comparison of out-of-sample cross-validation results for negative degree distri-

bution. The distribution of simulated statistics across 100 replications is compared against

the observed statistics for each block. Models compared are: I (Independent), I+D (De-

gree), I+D+PT (Partial Triad), and I+D+FT (Full Triad).
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Figure 6: Comparison of out-of-sample cross-validation results for positive edgewise shared

enemies (ESE +). The distribution of simulated statistics across 100 replications is com-

pared against the observed statistics for each block. Models compared are: I (Independent),

I+D (Degree), I+D+PT (Partial Triad), and I+D+FT (Full Triad).
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Figure 7: Comparison of out-of-sample cross-validation results for negative edgewise shared

enemies (ESE −). The distribution of simulated statistics across 100 replications is com-

pared against the observed statistics for each block. Models compared are: I (Independent),

I+D (Degree), I+D+PT (Partial Triad), and I+D+FT (Full Triad).
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Figure 8: Comparison of out-of-sample cross-validation results for positive edgewise shared

friends (ESF +). The distribution of simulated statistics across 100 replications is compared

against the observed statistics for each block. Models compared are: I (Independent), I+D

(Degree), I+D+PT (Partial Triad), and I+D+FT (Full Triad).
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Figure 9: Comparison of out-of-sample cross-validation results for negative edgewise shared

friends (ESF−). The distribution of simulated statistics across 100 replications is compared

against the observed statistics for each block. Models compared are: I (Independent), I+D

(Degree), I+D+PT (Partial Triad), and I+D+FT (Full Triad).
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C.2 Goodness-of-Fit

To validate the results in Table 2, we conduct a conventional ERGM goodness-of-fit analysis

following the method outlined by Hunter et al. (2008). Using the estimated coefficients,

we simulate 500 networks and compare the simulated network statistics with the observed

statistics. For the network statistics describing the signed network, we use the same metrics

as in Section 6.1. The red line marks the observed network’s statistic and should ideally

be near the median of the simulated values, shown by the center of the boxplots.

The results show that while the sparse, low-degree nature of the Wikipedia network

is captured by the simulations, the statistics distribution of the observed network is not

replicated with high accuracy. Overall, the in-sample goodness-of-fit analysis aligns with

the out-of-sample analysis, indicating that the more complex models, Partial Triad and

Full Triad, best describe the data.
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Figure 10: Comparison of goodness-of-fit results for positive degree distribution. Observed

network statistics (line) are compared to the distribution of statistics from 500 simulated

networks. Models compared are: I (Independent), I+D (Degree), I+D+PT (Partial Triad),

and I+D+FT (Full Triad).
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Figure 11: Comparison of goodness-of-fit results for negative degree distribution. Observed

network statistics are compared to the distribution of statistics from 500 simulated net-

works. Models compared are: I (Independent), I+D (Degree), I+D+PT (Partial Triad),

and I+D+FT (Full Triad).
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Figure 12: Comparison of goodness-of-fit results for positive edgewise shared enemies (ESE

+). Observed network statistics are compared to the distribution of statistics from 500

simulated networks. Models compared are: I (Independent), I+D (Degree), I+D+PT

(Partial Triad), and I+D+FT (Full Triad).
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Figure 13: Comparison of goodness-of-fit results for negative edgewise shared enemies

(ESE −). Observed network statistics are compared to the distribution of statistics from

500 simulated networks. Models compared are: I (Independent), I+D (Degree), I+D+PT

(Partial Triad), and I+D+FT (Full Triad).
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Figure 14: Comparison of goodness-of-fit results for positive edgewise shared friends (ESF

+). Observed network statistics are compared to the distribution of statistics from 500

simulated networks. Models compared are: I (Independent), I+D (Degree), I+D+PT

(Partial Triad), and I+D+FT (Full Triad).
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Figure 15: Comparison of goodness-of-fit results for negative edgewise shared friends (ESF

−). Observed network statistics are compared to the distribution of statistics from 500

simulated networks. Models compared are: I (Independent), I+D (Degree), I+D+PT

(Partial Triad), and I+D+FT (Full Triad).
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Figure 16: Visualization of the Wikipedia editor network based on selected pages.
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