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Abstract

Neural network representations of simple models,
such as linear regression, are being studied increas-
ingly to better understand the underlying principles
of deep learning algorithms. However, neural repre-
sentations of distributional regression models, such
as the Cox model, have received little attention so
far. We close this gap by proposing a framework for
distributional regression using inverse flow trans-
formations (DRIFT), which includes neural rep-
resentations of the aforementioned models. We
empirically demonstrate that the neural representa-
tions of models in DRIFT can serve as a substitute
for their classical statistical counterparts in several
applications involving continuous, ordered, time-
series, and survival outcomes. We confirm that
models in DRIFT empirically match the perfor-
mance of several statistical methods in terms of es-
timation of partial effects, prediction, and aleatoric
uncertainty quantification. DRIFT covers both in-
terpretable statistical models and flexible neural
networks opening up new avenues in both statisti-
cal modeling and deep learning.

1 INTRODUCTION

Many fundamental statistical modeling approaches, such
as random forests or generalized additive models, focus
on predicting the (conditional) mean [Wedderburn, 1974,
Wood, 2017, Breiman, 2001]. While these approaches
comes with extensive theoretical guarantees, they largely
ignore aleatoric uncertainty, i.e., the stochasticity in the con-
ditional outcome distribution. Recent developments there-
fore increasingly model the entire conditional distribution
instead of its conditional mean [Kneib et al., [2023]]. Mo-
tivated by their universal approximation property, neural
networks based on Gaussian mixtures were proposed early

to learn conditional outcome distributions [Bishopl | 1994].
Approaches to model (all) distributional parameters of a
parametric distribution as a function of features have been
proposed in statistics and have gained more popularity only
in recent years [see Kneib et al.,[2023| for details]. An al-
ternative to the aforementioned parametric distributional
regression methods was developed in the form of semi-
parametric transformation models, which remove the re-
strictive assumption of a parametric outcome distribution
by employing a feature-dependent transformation of the
outcome to a simple base distribution [[Cheng et al.,|1995|
McLain and Ghosh, 2013} [Hothorn et al., [2014]. This model-
ing approach is closely related to the concept of normalizing
flows in deep learning [Rezende and Mohamed, |2015| [Papa{
makarios et al., 2021]].

The idea behind both normalizing flows and transformation
models is to learn a feature-dependent transformation be-
tween the outcome and a latent variable with a fixed, simple
distribution, such as the multivariate standard normal dis-
tribution. However, normalizing flows are more expressive
than transformation models due to their non-parametric na-
ture and by relying on deep neural networks. Transforming
an outcome to a well-behaved latent scale goes back toBoxl
and Cox| [1964] and several works have already pointed
out the connection between normalizing flows and trans-
formation models [Baumann et al., 2021} |Sick et al., {2021}
Ausset et al.,[2021, Kook et al.| [2022b]]. However, no formal
connection has been established so far.

We close this gap by proposing a class of conditional flows
that can be used as a neural network based substitute for
various distributional regression approaches (transformation,
survival, and mixture models) in statistics.

Our Contribution In this work, we propose an
assumption-lean modeling framework termed distributional
regression using inverse flow transformations (DRIFT). The
proposed framework is built around conditional flows, or
equivalently, a neural and non-parametric variant of a trans-
formation model replacing its parametric transformation
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function (i.e., the inverse conditional flow) with a monotone
neural network. Using this model class, we show how nu-
merous statistical models can be understood as a DRIFT.
To obtain interpretable model terms, a neural basis func-
tion approach is used for processing features. Models in
DRIFT can be treated in a unified maximum likelihood
framework, covering continuous, discrete binary, ordered as
well as censored outcomes. We compare models in DRIFT
with state-of-the-art distributional regression models in real-
world applications featuring ordinal, (clustered) time-series
and survival outcomes and demonstrate that DRIFT is a com-
petitive alternative. We conclude with a benchmark study
in which DRIFT is shown to be a well-working, neural
network-based framework for distributional regression in
terms of predictive performance. DRIFT thus offers one
way to interpolate between statistical models and complex
neural networks in terms of flexibility and intelligibility.

2 RELATED LITERATURE

Structured Neural Regression Models Structured neu-
ral regression bridges the gap between the inherent inter-
pretability of statistical models and the predictive power
of black-box neural networks as universal approximators
[Hornik et al., [ 1989]). Early attempts to integrate statistical
models and neural networks focused on data exploration
[Ciampi and Lechevallier, |1995]], combining pre-trained sta-
tistical models within a network of models, or using the
parameters of statistical models as initial network weights
[[Ciampi and Lechevallier, |1997]], with extensions to gener-
alized additive neural networks [Potts| |1999, de Waal and
du Toit, | 2007].

Advancements in deep learning, including automatic dif-
ferentiation and the availability of efficient modular soft-
ware libraries, have led to the recent introduction of semi-
structured distributional regression [Riigamer et al., 2023b|.
This approach proposes an end-to-end differentiable hybrid
network architecture that combines interpretable structured
additive predictors, as seen in GAMs, and arbitrary deep
learning models within a distributional regression frame-
work. This has led to a series of subsequent developments,
particularly critical in domains such as medicine, where
it is essential to model interpretable effects of tabular fea-
tures alongside unstructured data modalities [Rudin, [2019],
such as images [Baumann et al.| 2021} |Dorigatti et al., 2023}
Kook et al.,[2022b, [Kopper et al.,|2022, |Herzog et al., 2023]].

A distinct approach is proposed in neural additive mod-
els [Agarwal et al.l [2021]] and its extensions [e.g., Chang
et al., 2023| Radenovic et al.| 2022, |[Yang et al., 2021].
Here, a standard additive GAM predictor for the conditional
mean is assumed, with the shape functions for each feature
learned in separate subnetworks. This approach overcomes
the potential limitations of pre-defined basis functions to
model highly complex or jagged functions, albeit at the

cost of drastically increased parameter counts and a still-
evolving theoretical foundation [Heiss et al.,|2019, |Zhang
and Wang}, 2022]]. Despite the recent progress in structured
neural regression models, they typically impose the restric-
tive assumption of a known parametric outcome distribution,
highlighting the importance of non-parametric normalizing
flows.

Normalizing Flows Normalizing flows model a random
variable Y with a complex distribution through composi-
tions of invertible and differentiable transformations of a
latent random variable ¢ that has a known base distribu-
tion with no free parameters, such as a standard normal
distribution. In our context, these diffeomorphisms are pa-
rameterized by deep neural networks [Dinh et al., 2016].
Specifically, normalizing flows express Y as ¢(¢), where
¢ : R — Y is a flow. Usually, ¢ follows a pre-specified
functional form that enables fast inversion and computation
of the determinant of the Jacobian, which is required to
obtain the density of Y. Examples include coupling [Dinh
et al.l |2016], planar and radial [Rezende and Mohamed,
2015]), autoregressive [Kingma et al. [2016]], or residual
flows [Chen et al.,|2019]. The weights parametrizing ¢ can
be learned through maximum likelihood training, and sev-
eral such transformations can be stacked to approximate
arbitrarily complex distributions. Normalizing flows have
been successfully applied both to conditional and uncondi-
tional generative modeling, and distributional regression [Pa;
pamakarios et al., 2021} 'Winkler et al.| [2019].

3 ASSUMPTIONS IN STATISTICAL
MODELING

Statistical modeling requires direct input by the data analyst
in the form of assumptions that express relevant domain
knowledge, which is unavoidable in situations with scarce
or highly complex data such as multi-task learning [Silver]
et al.,[2013]], biology [Xu and Jackson, [2019]], material sci-
ence [Childs and Washburn, [2019]], physics [[Stewart and
Ermonl, [2017], and more. Common assumptions fall into
two distinct categories.

Distributional Assumptions The construction of both
mean and distributional regression models usually requires
assuming a known, parametric family of distributions of the
underlying outcome. Typical examples in statistical mod-
eling encompass the linear model (Gaussian error distri-
bution), generalized linear and additive models assuming
an exponential family [Hastie and Tibshirani, |1986| |[Nelder
and Wedderburn, |1972]], or structured additive distributional
regression models, specifying additive predictors for all
distribution parameters of an a priori known parametric
distribution [Kneib et al.l 2023]]. Identifying an appropriate
parametric distribution for the model generally depends on
either solid domain knowledge or exhaustive model com-
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parisons. Moreover, most distributional assumptions do not
allow for multimodality in the learned distribution. Unmet
assumptions can lead to inconsistent, biased, or inefficient
estimation of model parameters [see, e.g., Pawitan, 2001}
White}, |1982]]. To robustify results against misspecified dis-
tributions, various approaches try to compensate for unex-
plained variance or samples, e.g., by applying outlier re-
moval or using a more heavy-tailed distribution [see, e.g.,
Huber, 201 1]]. While this practice can improve performance,
model validation and diagnostics are manual and iterative
processes that, in turn, often require domain knowledge
[White, [1981]].

Structural Assumptions To foster interpretability and
limit complexity, statistical models commonly make addi-
tional structural assumptions. Two of the most common
ones are additivity and linearity of predictors. This means
that the conditional mean of a response Y given features
X, u(X) = E[Y|X] (or any other aspect of the condi-
tional distribution), relates to features by g(u(X)) = X
with invertible link function ¢ and feature weights 5. One
of the most prominent examples following this assump-
tion is the generalized linear model [Nelder and Wedder{
burn, |1972]. Extensions of (generalized) linear models, such
as GAMs [Hastie and Tibshirani, 1986, (Wood, [2017], al-
low to go beyond linear feature effects by using, e.g., a
spline basis representation to introduce non-linearity. In this
case, domain knowledge is often needed to choose the best-
fitting spline basis, the number and position of knots, or
the amount of smoothness [see, e.g., Gu, 2013} Schumaker,
2007, |Wood, |2017]]. Another typically human-based deci-
sion for such models is the inclusion of higher-order feature
interactions. Limiting the degree and number of interac-
tions allows controlling the number of parameters (and thus
scalability) while ensuring a certain level of interpretability.

4 INVERSE CONDITIONAL FLOWS FOR
DISTRIBUTIONAL REGRESSION

Consider observations {(y;, ;) }?_; of a univariate outcome
Y € Y C R and features X € X. In this work, we focus on
modeling the entire conditional distribution of Y given X.
We propose a flexible class of models for the conditional
distribution of Y given X that interpolates between highly
flexible normalizing flows (low domain knowledge) and
parametric models (high domain knowledge) for various
outcome types. In this class, a model needs two components
to be fully specified. First, a parameter-free base distribution
with cumulative distribution function (CDF) F : R — [0, 1]
and continuous, two times differentiable, log-concave den-
sity f; and second, a conditional flow ¢ : Rx X — ) which
maps observations from the parameter-free base distribution
to the conditional outcome distribution for all constellations
of features. By conditional flow, we refer to a (composi-
tion of) function(s), later parameterized by neural networks,

which is monotonically increasing for all possible realiza-
tions of the features.

Let P denote the class of all conditional CDFs with sample
space ) and conditional on features in X. Then for each
base CDF F', the class of models under investigation can
be defined as the set ® containing all conditional flows
¢ : R x X — Y such that for all conditional distributions
Fy|x € P, we have that for e ~ F, ¢(¢, X) ~ Fy|x.

Domain knowledge can now enter as restrictions on ® 5.
The conditional cumulative distribution function of Y given
X, denoted by Fy|x, can for all x € X" be written as

FY|X::E(') = F(¢_(-,$)),

where ¢~ (-,z) == sup{z € R : ¢(z,2) < -} denotes
the conditional (generalized) inverse flow. The inverse flow
plays an important role in training models in DRIFT (see
Section 4.3)). Next, we consider what types of assumptions
can be imposed on these models and how those assumptions
affect model capacity, i.e., the flexibility of conditional flows
contained in @ and the conditional distributions they can
model (see Figure [I] for an example). Then, we discuss
explicit parameterizations of and how to train models in
DRIFT.

4.1 ASSUMPTIONS ON THE BASE
DISTRIBUTION

On their own, assumptions on the base distribution do not
limit model capacity, because any conditional CDF Fy|x €
P can be composed as F o F~1 o Fy|x. Then the set of
functions

{¢- =F 'oFy|x | Fy|x € P}

gives rise to all conditional flows with base CDF F'. Choos-
ing a particular I only fixes the scale on which to interpret
the components of the flow ¢.

Example 1 (Assumptions on the base distribution). Binary
classification via logistic regression can be thought of as
DRIFT with standard logistic CDF F' and inverse condi-
tional flows on the log-odds scale, i.e.,

— Fy | X=x (y)
¢~ (y,2) = log 7— Py s ()
However, the conditional cumulative distribution Fy | x can
be modeled with other base distributions, such as the stan-
dard minimum extreme value, or standard normal distribu-
tion. These correspond to inverse conditional flows inter-
pretable on the log-hazard cloglog(7) = log(— log(1 —)),

or probit F];(lm) scale [Tutz, 2011].
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Figure 1: Depiction of the location-scale DRIFT in Exam-
ple @ For three values of X (dashed/solid/dotted), the stan-
dard logistic base distribution (top side) is transformed into
the conditional outcome distribution (right side) via the con-
ditional flows (middle). In this example, the distribution for
x = 0 is a normal mixture with equal weights (solid line).

4.2 STRUCTURAL ASSUMPTIONS

Structural assumptions take a variety of forms and limit
model capacity more or less severely. In DRIFT, we impose
an additivity assumption on the conditional flow ¢ in terms
of the features, which is the distribution-free analog to addi-
tivity assumptions in GAMs on the scale of the conditional
mean. We define the class of location-scale conditional flows
used in DRIFT by

DS ={pePp| (e, ) = po(u(z) +o(z)e)}, (1)

where ;1 : X — R controls location, o : X — R controls
scale, and ¢g : R — ) is called reference flow, because it
is the flow from F' to any Fy|x—,, for which p(zg) = 0
and o(z¢) = 1 (see Figure[I). Additivity assumptions on ¢
restrict model capacity but do not imply a fixed family of
conditional outcome distributions because no distribution
assumptions are implied by the reference flow. Features
can only change location and scale of the base distribution
before applying the reference flow [Rezende and Mohamed,
2015, Siegfried et al., 2023]].

Example 2 (Structural assumptions). Here, we illustrate
how to construct and sample from a location-scale condi-
tional flow with a single feature. First, we choose a ref-
erence flow ¢¢ = F;\IX:zo o F' for an arbitrary refer-
ence 9 € X. Then, we introduce a shift  and scale
effect 0. Samples from Y|X = x are then generated
via Y = ¢o(o(z)e + p(x)). For example, we choose
e ~ F to follow a standard logistic distribution, and a
Gaussian mixture 0.5N(—2,1) + 0.5N(2,1) for Fy|x—z,-
Further, we introduce a nonlinear p : x +— p(x) with
p(x) = exp(l —exp(—x)) —land o : & — +/exp(z)

as the shift and scale effects. Here, 11 and o are such that
the reference is 9 = 0 since p(zo) = 0 and o(zg) = 1.
The interplay between base distribution, conditional flow
and conditional outcome distribution in DRIFT is shown in

Figure[T]

A combination of distributional and stronger structural as-
sumptions can fix the conditional outcome distribution and
thus severely limit model capacity. When limiting the refer-
ence flow to the identity, i.e.,

{0 € 5 | ¢(e,2) = p(x) + o(2)e},

the distribution of Y| X is limited to the location-scale fam-
ily induced by F'. For instance, with e ~ N(0,1), Y C R
and X CRY, p: 2+ (1,2)"Band 0 = ¢ > 0, such linear
conditional flows recover linear regression.

4.3 TRAINING MODELS IN DRIFT VIA
MAXIMUM LIKELIHOOD

Models in the DRIFT framework lend themselves to estima-
tion via maximum likelihood. DRIFT can be used to model
the distribution of outcomes with binary, ordinal, count-
valued, continuous and mixed discrete-continuous sample
space Y. For continuous (exact) responses, the likelihood
function is given by the log-density, whereas for discrete
responses, the likelihood is obtained as a difference in cu-
mulative distribution functions. Since we have access to
the entire conditional distribution, we can also evaluate the
likelihood contributions of censored outcomes.

We consider the log-likelihood function for exact continu-
ous, discrete and uninformatively censored outcomes. For
exact continuous observations y € R, the log-likelihood
{:Pp x Y x X — Ris given by the log-density, i.e.,

.y, ) =108 79~ (3, 2)) 20 (2],

Using deep learning libraries, involved gradients of the log-
likelihood can be computed efficiently. For discrete out-
comes supported on {y1,y2,...,yx} C R, we have for
k=2,...,K -1,

(&, yk, x) = 10g[F (¢~ (yk, x)) = F (¢ (yr—1,2))]-

The log-likelihood of interval censored outcomes (y;, y.]
can be defined likewise,

€<¢’ (yhyu}vx) = 1Og[F(¢_ (yu"r)) - F(qj)_(ylvx))]v

with a slight abuse notation when allowing interval-valued
observations.

To evaluate the likelihood, we thus need evaluate the base
CDF F and the (generalized) inverse flow ¢~ . Since F' is
fixed, we now turn to parameterizations of ¢~
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44 PARAMETERIZING MODELS IN DRIFT

We parameterize models in DRIFT explicitly via neural net-
works. Three components need to be specified: The inverse
reference flow ¢, shift 11, and scale o effect. The inverse
reference flow needs to be monotonically increasing and its
smoothness depends on the outcome type. Location effects
are unconstrained, whereas scale effects need to fulfill a
simple positivity constraint. In this work, we parameterize
all three functions via neural networks.

Inverse Reference Flow For discrete outcome types, a
dummy encoded basis with increasing coefficients is suffi-
cient to ensure monotonicity. For absolute continuous out-
comes, ¢, can be a smooth invertible function. Classically,
¢, has been parameterized via basis expansions, such as
B-splines [[Hothorn et al., 2014] or polynomials in Bern-
stein form [Hothorn et al., 2018, McLain and Ghosh, 2013]].
Here, we parameterize the reference flow via monotonic
neural networks [Huang et al.,|2018]]. Sufficient conditions
for monotonicity are given in the following result.

Proposition 1 (Monotonicity of the conditional flow). Con-
sider an inverse conditional flow of the form

¢~ (4, %) = dyx (9, (1), p(x)),

where qbyx, Y and ¢ are feed-forward neural networks.
For ¢~ (y, x) to be strictly monotonically increasing in y, it
is sufficient for ¢, and ¢, to have strictly positive weights
and strictly monotonic activation functions (e.g., tanh acti-
vations).

In the special case of parameterization (1)), we thus only
need to choose ¢, to be a monotonic neural network. The
proof of the more general result can be found in, e.g.,|Silval
et al.| [2018]].

Location and Scale Effects To avoid restrictive structural
assumptions while preserving interpretability, we specify
predictors v for u and o using neural basis functions [Agary
wal et al.|[2021], i.e.,

(@) = T pi(5), @)
where each p; represents a feature-specific network learn-
ing an adaptive basis function for the respective feature ;.
This network can be further extended to, e.g., include bi-
variate feature effects 3, ., pi j(2i, ;) as also done in
our numerical experiments or even higher-order interactions.
In case multiple feature effects contain the same feature
x;, various approaches exist to ensure the model’s identifi-
ability [see, e.g.,[Riigamer et al.l [2023b]]. Identifiability is
particularly important if the model predictor in () is fur-
ther extended by a more complex (deep) neural network
capturing higher-order interaction effects. In that case, the
recently proposed approach in Riigamer| [2023|] provides
a non-invasive post-hoc adaption of the model that is also
suitable for our approach.

S NUMERICAL EXPERIMENTS

We now present a variety of numerical experiments where
we investigate whether DRIFT is a viable substitute to one or
more established statistics approaches of similar complexity
and aligns with their goodness-of-fit, effect estimation, and
predictive performance. These experiments also provide
insights into whether normalizing flows can be similarly
interpretable as statistical models. In the Supplementary
Material, we further analyze the hyperparameter stability of
models in DRIFT and give the explicit parameterization of
all models and competitors used in the experiments.

Setup In Sections 5.3l and|5.6] we parameterize ¢

in terms of an invertible neural network. To further demon-
strate the ease with which to interpolate between a fully neu-
ral and semi-parametric ¢, , we specify ¢, in Sections
and[5.5]using polynomials in Bernstein form, an alternative
to monotone neural networks used in transformation mod-
els [Hothorn et al.| 2018]] and also recently discussed for
normalizing flows [Ramasinghe et al.|[2021]].

5.1 ORDINAL REGRESSION

The UCI “Wine quality” dataset [Cortez et al.,|2009] con-
tains 1599 red wines whose quality is described on an ordi-
nal scale (10 levels of which only 3—8 have been observed).
We consider five features, namely fixed and volatile acidity,
citric acid and residual sugar content, and concentrations
of chlorides. Non-linear effects are specified by a feature-
specific ReL.U-network with four hidden layers and eight
units each.

— DRIFT — POLR

fixed acidity volatile acidity
0.5
: 5
0.0 {
0.
-0.5
s -2;
£-10
[H)
= citric acid residual sugar
e 0.4+
c y
0.3
o /\ 0.2
o0 / \ 0.0+
-0.3 0.2

o o P 1 (P
value

Figure 2: Estimated partial effects for four features in a 20-
fold cross-validation of the UCI wine quality dataset using a
DRIFT and a proportional odds logistic regression (POLR)
model.
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== GAM (Neural Basis) == GAM (Spline Basis) == DRIFT

days since start humidity
0.2
O.
0.14
_2.
0.0
,4.
—
5] ] -0.1
[} 0 200 400 600 25 50 75 100
.Tg population temperature
= 0.8
g
0.4+ 0.254
e
0.01 0.00
70_4.
—0.25+
—0.8+
—0.50+1
-1.24 d
4 8 12 16 -20 0 20 40
value

partial effect

-
L
o
[a]
0.2
0.0
-0.2
=
<
Q
-0.4

Figure 3: Left: Estimated effects on the prevalence of Covid-19 using a GAM with neural or spline basis and DRIFT (colors).
Right: Estimated spatial effects on the prevalence of Covid-19 from DRIFT and GAM (with spline basis).

Results: In a 20-fold cross-validation, an ordinal DRIFT
performs on par with the standard proportional odds logistic
regression with linear feature effects (log-score —1.11 (0.06)
vs. —1.12 (0.06)) and partial effect estimates deviate from
the proportional odds model (POLR, Figure 2).

5.2 GENERALIZED ADDITIVE MODELS

To compare DRIFT with GAMs, we re-analyze a spatio-
temporal data set of number of Covid-19 incidences in the
US previously analyzed in Riigamer] [2023]). We follow their
data cleaning procedure and model the prevalence of in-
fections using a GAM (either by using a B-spline basis or
feature-specific neural networks) with features for popula-
tion, date, latitude and longitude, temperature, and humidity.
We then compare these previous methods with DRIFT (us-
ing a monotone neural network for ¢, ) qualitatively by
analyzing the estimated partial effects.

Results: Inspecting Figure 3] (left) we find that the partial
effects based on neural basis functions are underfitted com-
pared to spline-based partial effects, and even collapse to a
zero effect for humidity. This difficulty in training neural ad-
ditive models is a well-known phenomenon in the literature.
In contrast, effects estimated via DRIFT look very similar
to those obtained from a traditional GAM with spline basis.
This is also the case for the spatial effect (Figure 3] right).

5.3 TIME SERIES ANALYSIS

We forecast the hourly electricity consumption of 370 clients

contained in the UCI Electricity dataset
[2017]]. We model each of the univariate time series with

48 consecutive lags based on 9 days of data (starting 2014-
07-01). We first determine the optimal number of training
epochs using data for the first 7 days as training set and the
8-th day as validation set for early stopping. Then, knowing
the optimal number of epochs, we use the first 8 days for
the final training and forecast on the 9-th day.

Results: We obtain a log-score of -0.538 (0.195). As a com-
parison, we use the auto.arima function
that fits an ARIMA model with an automatic search
for the best model parameters. This results in a worse per-
formance with a log-score of -4.434.

5.4 MIXTURE MODELING FOR MULTIMODAL
DISTRIBUTIONS

We next demonstrate the flexibility of our approach to model
multimodal distributions. To this end, we investigate the
ATM dataset from [Riigamer et al.| [20234], known to follow
a time-dependent process with mode-switching behavior.
We focus on the multimodality in the data and compare our
approach against mixture models — a classical choice for
multimodal data. Both approaches use the time information
as a feature to allow for a time-varying density estimation.

Results: Based on a predefined test dataset, we find that the
negative log-likelihood (smaller is better) of our approach
is 2.09 whereas the mixture model with 2 components as
reported in results in a value of 2.27. When investigating
the learned densities (see Figure f), we find that both ap-
proaches capture the 2 modes at later time points, but DRIFT
works slightly better by also capturing the multimodality at
earlier points in time. Furthermore, our approach does not
require to specify the number of modes a priori.
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Figure 4: Left and center: Estimated Gaussian densities over
time (y-axis) for the two mixture components in the mixture
model. Right: Estimated densities over time using DRIFT.

5.5 SURVIVAL ANALYSIS

Next, we use a DRIFT to learn spatio-temporal determi-
nants of response times (time-to-arrival) of the London
fire brigade to fire-related emergency calls. The data has
been previously used in |Taylor|[2017]], Kopper et al.| [2022].
DRIFT allows various survival analysis model classes to
be used, e.g., a piecewise exponential additive model [Ben{
der et al., 2018 or a Cox proportional hazards [Cox} |[1972]
model. Using 25 different hold-out splits we compare a
DRIFT resembling a Cox model with smooth log cumula-
tive baseline hazard ¢, (see Supplementary Material for
details) with a piecewise exponential additive model based
on the reweighted integrated Brier score [IBS, |Sonabend,
2022]]. We also review the performance of a featureless
learner (Kaplan-Meier) and report the IBS at the quartiles
of the follow-up time.

Results: Figure [5] shows the comparison between results
obtained by a piecewise exponential additive model (PAM)
and DRIFT in terms of prediction performance (integrated
Brier score; left) and qualitatively in terms of estimated log
cumulative hazard functions conditional on time of day. The
DRIFT shows slightly better out-of-sample performance in
terms of re-weighted integrated Brier score and estimtates
a stronger influence of time of day on the survivor curve
compared to the piecewise exponential additive model. Mar-
tingale residuals [Barlow and Prenticel |1988]] on the held-out
data for a single split (Figure[5} right) show that PAM and
the DRIFT make qualitatively similar prediction errors and
illustrate that DRIFT allows residual-based model checks
for non-continuous outcomes.

5.6 STRUCTURED ADDITIVE DISTRIBUTIONAL
REGRESSION AND TRANSFORMATION
MODELS: BENCHMARK STUDY

Finally, we check if DRIFT is able to match the predic-
tive performance of other additive distributional regression

approaches. For the comparison, we use a structured addi-
tive distributional regression with parametric distribution

assumption [Klein et al., 2015]], a transformation model

[Hothorn et al.}2014]], and DRIFT for which the reference

flow is non-parametric. As both structured additive distribu-
tional regression and transformation models represent very

flexible approaches that are closely related to our method,
we run a benchmark study to compare performances us-
ing an extended collection of the classical UCI machine
learning repository datasets [Dua and Graff, 2017]. As base
distribution F' we use a Gaussian for both DRIFT and the
transformation model. The distributional regression is also
defined based on a Gaussian distribution. The predictors
for the transformation and distributional regression model
are defined using thin-plate regression splines. For DRIFT
we use neural basis function splines based on one fixed
architecture (see Supplementary Material for details). For
¢y , we use a simple monotonic neural network with two
hidden layers of either 10 or 20 neurons each. We also com-
pare these methods when using a semi-structured predictor,
i.e., when enhancing the structured predictor with a deep
neural network for all features and methods (see details in

Appendix [B23.6).

Table 1: Comparison results for different datasets (rows) and the
structured methods (DR: distributional regression; TM: transforma-
tion model, DRIFT: Location-scale) showing the mean log-score
(and standard deviation in brackets) based on a 10-fold cross-
validation. The best methods per dataset are highlighted in bold.

Dataset DR ™ DRIFT
Airfoil -3.6(0.3) —-32(0.2) -3.1(0.1)
Concrete —3.4(0.2) —-3.5(0.3) -3.3(0.1)
Diabetes —5.8(0.3) —5.6(04) —5.2(0.2)
Energy -27(0.2) -=2.6(0.1) —2.3(0.1)
Fish —-14(0.2) -13(0.3) -1.3(0.1)
ForestF —-19(0.3) -1.7(0.2) -1.4(0.2)
Ltfsid —6.5(0.2) —6.2(0.3) —4.7(0.1)
Naval 4.0 (0.2) 3.8 (0.3) 5.1(0.1)
Real —-130.4) -1.1(02) —-0.9(0.1)
Wine 0.5(0.2) 0.8 (0.4) 4.2 (0.2)
Yacht —-1.5(0.3) -—-1.704) —-0.8(.1)

Results: Our results (Table[I)) confirm that DRIFT is able
to match the performance of other methods, in many cases
even outperforming them. This is particularly notable for
datasets in which the outcome exhibits a non-Gaussian dis-
tribution (unconditionally). For example, in the Wine dataset,
the outcome is technically discrete, but commonly treated
as continuous. Here, distributional regression with a para-
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Figure 5: Left: Predictive performance in terms of integrated Brier score (lower is better, evaluated at the 25th, 50th, and 75th
percentile) of a Kaplan-Meier estimator, a piece-wise exponential additive model (PAM) and a DRIFT. Middle: Estimated
log cumulative hazards given daytime (in hours; colors). Right: Out-of-sample martingale residuals show comparable

prediction errors for DRIFT and PAM.

Table 2: Comparison results for different datasets (rows) and
semi-structured methods (DR: distributional regression; TM: trans-
formation model, DRIFT: Location-scale) showing the mean log-
score (standard deviation) based on a 10-fold cross-validation. The

best methods per dataset are highlighted in bold.

Dataset DR (Semi) TM (Semi) DRIFT (Semi)
Airfoil -2.9 (0.1) -3.0(0.1) -3.1(0.5)
Concrete -3.3(0.1) -3.3(0.3) -3.0 (0.3)
Diabetes -5.7 (0.5) -6.0 (0.4) -5.4(0.2)
Energy -2.9(0.1) -2.7(0.5) -2.2(0.1)
Fish -1.3(0.1) -1.5(0.2) -1.3(0.2)
ForestF -2.0(0.3) -1.9(0.2) -1.4 (0.4)
Ltfsid -7.7 (7.5) -5.9(0.7) -4.6 (0.1)
Naval 4.1(1.0) 39(0.1) 5.1(0.3)
Real -1.4 (0.4) -1.4 (0.6) -1.2 (1.1)
Wine -0.2 (0.0) -0.4 (1.0) 2.12.1)
Yacht -1.0 (0.2) -2.2 (2.0) -0.5(0.2)

metric Gaussian assumption yields the worst results. Using
a transformation model can improve this result, however,
both parametric alternatives are outperformed by the non-
parametric neural reference flow used in DRIFT.

We also run the same comparison as presented in Table 1]
when using model formulations discussed in|Baumann et al.
[2021]], Riigamer| [2023]], namely (i) when combining struc-
tured predictors with neural networks (Table[2)), (ii) neural
basis functions for all three approaches (Table[d]in the Sup-
plement), and (iii) only deep neural network predictors for
all three methods (Table [3in the Supplement). Similar to
the results presented in Table [I] DRIFT is on par with or
improves upon DR and TM.

6 CONCLUSION

We demonstrate that numerous statistical models can be ex-
pressed in the DRIFT framework. Equipped with neural ba-

sis functions, DRIFT enables interpretable model terms with
little requirement for manual input from the modeler. The
versatility and practical applicability of DRIFT is reinforced
by favorable benchmark comparisons and applications in-
volving various outcome types. Overall, our results suggest
that DRIFT serves as a competitive neural network-based
framework for distributional regression tasks. A promising
avenue for future research involves developing statistical
inference methods tailored to DRIFT.
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A ADDITIONAL EXPERIMENTS
A.1 MULTIPLE DEFAULTS

To investigate the influence of hyperparameters on the performance of DRIFTs, a grid search is conducted for a large
collection of datasets from the UCI repository (details below). The purpose of this study is to find a good default that
works well on most datasets such that DRIFTSs can be used off-the-shelf similar to other (mostly tuning-free) distributional
regression approaches. To account for the stochasticity of the training process, each combination of hyperparameters is
trained 3 times with different seeds. Next to different learning rates and dropout rates, the architectures of the neural networks
are varied via the number of units and layers for both the features and outcome of the network (i.e., the experiments assume
an unstructured predictor for the feature part of the DRIFT). The following hyperparameters are chosen for the grid search:

* learning rate € {1072,5 x 1073,1073},

* dropout € {0,0.5},

* seed € {1,2,3},

* units feature network € {20, 50,100},

* number of layers feature network € {1, 2},

* units ¢, € {20,50,100},

* layers ¢ € {2,10},

* last layer units ¢, € {5,20}.
The normalized validation negative log-likelihood (NLL,,;) for each choice of hyperparameters across data sets resulting
from the grid search is displayed as boxplots in Figure[6] It is evident that neither the specific choice of hidden units, the
number of layers, nor the learning rate had a consistent effect on the validation loss, with only an increased dropout rate

leading to slightly worse results across most datasets. The analysis suggests that the model performance is largely robust
with respect to these hyperparameters.

A.2 INFLUENCE OF INITIALIZATION

While there seems to be little influence in the choice of hyperparameters, architecture and learning rate, we found that
the initialization of weights in the monotonic NN ¢, plays a key role. This part of the DRIFT requires special attention
as every weight is defined to be positive to guarantee monotonicity. This can, e.g., be implemented in TensorFlow by
using the non_neg constraint function for every weight in every layer. In addition to the constraint function, the initial-
ization of the weights should also be positive. In the following, we analyze three different initializations. For the first
initialization, we set the lower bound of the Xavier initialization |Glorot and Bengio| [2010] to zero by sampling from

w~U (0, 6/ (fani, + fanom)), where fan;, is the number of neurons in the previous layer and fang,, the number or
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Figure 6: The results of the grid search on different datasets.

neurons in the current layer. Using this naive approach, the variance after each layer increases, and even a rather small neural
network (e.g., with three hidden layers) will have difficulty converging. To analyze the effect in more detail, we simulate data
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from a standard normal distribution (Y ~ N (0, 1)) and pass it through the initialized ¢, network. The resulting distribution
after each activation function with the Xavier initialization and tanh activation is shown in the top row of Figure|7} We see
that after three hidden layers, the activations in the network have saturated, making the training extremely challenging.

The second initialization is based on the assumption that the expectation and variance after each layer should remain constant.

Using this assumption and by using a uniform distribution with a zero lower bound it follows that the upper bound b should
be initialized with b = ﬁhn[ The middle row in Figure|7|shows the activation distribution with this initialization
and the same input data. We see that this alternative initialization scheme improves the saturation problem to some extent.

However, after the third layer, most of the activations are still saturated.

Further adapting the initialization, we empirically find that

9
w ’ \/max(fanim fanout)2 ( )

results in only minor changes in the variance between different layers and solves the convergence problems even for deeper
architectures.
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Figure 7: The value distribution of activations after each layer when processing 10,000 samples from a standard normal
distribution. The network architecture is based on a four-hidden layer network with 100, 100, 20, and one output neuron,

respectively. The top row shows the results by initializing the weights according to w ~ U (0, \/6/(fany, + fanout)),

the middle row by using a uniform distribution with upper bound b = ,/ m, and the bottom row by using the
in out
initializing function according as given in Equation [3}
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B NUMERICAL EXPERIMENT DETAILS

B.1 GENERAL PARAMETRIZATION

In most cases where we use DRIFT or neural basis functions, we specify
* ¢, by a monotonic neural network with two hidden layers, each with 10 hidden units, positive weight constraint and

a tanh activation function. The hidden layers are followed by an output layer with 1 unit, also with positive weight
constraint, but linear activation function to allow mapping into R.

* the neural basis functions p; by a multi-layer perception with a 64-64-31-1 architecture, ReLU activations except for
the last layer (which has no activation), and a bias in the penultimate layer only.

B.2 UCI BENCHMARK DATASETS

Table 3] provides an overview of UCI datasets used in our benchmark.

Table 3: Data set characteristics and references.

Dataset #Obs. # Feat. Pre-processing

Airfoil 1503 5 -
Concrete 1030 8 -

Diabetes 442 10 -
Energy 768 8 -
Fish 908 6 -
ForestF 517 12 logpl transformation for area; numerical repre-
sentation for month and day
Ltfsid 182 4 -
Naval 11934 16 -

Real 414 6 Subtract minimum for X1; logpl transformation
for X2; log transformation for X3 — X6 as well as
for the outcome

Wine 178 13 -

Yacht 308 6 -

B.3 DETAILS OF INDIVIDUAL EXPERIMENTS
B.3.1 Mixture Modeling

The Gaussian mixture (of experts) model implemented in a neural network as suggested in Riigamer et al.| [2023c] is
parametrized by a mixture of two normal distributions with the same additive predictor for both mean and standard deviation
parameter y,, 0,k = 1,2. The additive predictor contains an intercept 3y , . and Bo o, ., respectively, and a thin-plate
regression spline f), ., f,x, respectively, for the feature me.

DRIFT is parametrized using a Bernstein polynomial of order 30 for ¢, and a location shift using a neural basis function
p(Ztime) defined by a feed-forward neural network with two hidden layers, each with 64 units, ReLU activation and a bias
term, and a final layer with 1 unit, linear activation and no bias term.

B.3.2 Ordinal Regression
As in|Gal and Ghahramani! [2016]], we consider the subset of red wines and use the same cross-validation folds. All features

were standardized to the unit interval. For each of the 20 splits, we fita t ram: : Polr |[Hothorn et al.|[2022] with linear
covariate effects and a DRIFT via deeptrafo: : PolrNN Kook et al.|[2022a] with a neural basis function architecture.
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The neural basis functions are specified via a fully connected neural network with four ReLU layers with eight units each
and a single unit last layer with linear activation. The estimated partial effects for each predictor were centered to have mean
zero. The DRIFT was trained for 200 epochs with the Adam optimizer, a learning rate of 0.001 and decay 0.0001.

Models and parameterizations We have an ordered response Y € {1,..., K} and covariates X € RP. The DRIFT is
parameterized with the following base distribution F' and conditional inverse flow ¢~ :

P =) = (14 exp(—)) ™,
¢~ (y, ) = ¢ (y +ij j),

¢y (y) = (1 (y—l) L1y=K))"e
s.t.01<02<~-~<9K = 400,

where p; : [0,1] = R, j=1,...,p are feed-forward neural networks as described above.

The POLR model is the same as above with the specialization that p;(x;) == x;5;, j = 1, ..., p are linear functions.

B.3.3 Survival Analysis

We used the London Fire Brigade data set analyzed in Taylor| [2017]]. The data describes the response times of the respective
fire brigade in relation to spatiotemporal and economic features. We administratively censored excessive response times
(T" > 1000) and model the censored event time with a spatial effect (latitude and longitude), temporal effect (time of the
day), and categorical features for the property type and the district name. The predictors p; are either linear effects for the
categorical features or neural basis functions for the time and spatial features with structure as described in Section [B.T]
More precisely, the temporal effect is modeled with a univariate neural basis function with 64 and 12 units, each with ReLU
activation function. The spatial effect is modeled by a bivariate NAM with 64, 32, 32, and 10 units each and ReL U activation
function. Using these effects, we define the Cox proportional hazards model with smooth log cumulative baseline hazards in
our DRIFT framework using the following parametrization:

F:z—1—exp(—exp(z))
0" (y,@) = ay) 0+ ) pi(a)),

st <6, <. < 9M+1>

where ® ; denotes the standard normal CDF and a a basis of polynomials in Bernstein form of order M. are feed-forward
neural networks. We train the DRIFT using the Adam optimizer with a learning rate of 0.001 in a batch size of 32 for 250
epochs. As a comparison, we fit a piece-wise exponential additive model (PAM; Bender et al.|[2018]]) with equivalent feature
effects using a thin-plate regression and tensor-product spline basis using pammt ool s |Bender and Scheipl|[2018]]. The
evaluation criterion is the reweighted integrated Brier Score introduced in|Sonabend| [2022] which is a proper scoring rule
Gneiting and Raftery|[2007]]. Both learners are compared to an uninformative model, the Kaplan-Meier estimator (KM;
Kaplan and Meier| [[1958]]) as a baseline.

B.3.4 Generalized Additive Models

We follow the data pre-processing of Riigamer|[2023]] and define both the NAM and the GAM using a Poisson outcome
distribution. Both additive predictors use (neural-based) splines for date, population, temperature, and humidity. In addition,
a tensor-product spline is used for latitude and longitude. Non-linear feature effects are defined by either

a) univariate basis functions as described in Section [B.1]to resemble univariate splines,

b) two feed-forward neural networks as described in a) with 5 units in the last layer (instead of 1 unit) and then combined
via a tensor-product followed by one last layer with 1 unit and no activation as well as no bias term.

The GAM uses thin-plate regression splines for univariate effects and a tensor-product spline version for the bivariate spatial
effect. The DRIFT’s inverse reference flow ¢, network is defined as a two-layer non-negative tanh-network with 10 neurons
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each as well as positive weight constraint. All models are trained for a maximum of 250 epochs, batch size of 128, early
stopping based on a 10% validation split with patience of 15 epochs, and Adam with a learning rate of 0.001.

B.3.5 Time Series Regression

The electricity data set serves as a frequently chosen data set for state-of-the-art forecasting challenges [e.g.|Wang et al.}
2023, [Wu et al., [2023]). It consists of records denoted in kilowatts at 15-minute intervals which we convert to kilowatt-hours.
In DRIFT, the time lags enter linearly as location and scale effects on the standard Gaussian base distribution. The DRIFT’s
inverse reference flow ¢, network is defined as a three-layer non-negative tanh-network with 20 neurons for the first two
layers, 5 neurons in the consecutive layer as well as positive weight constraint. The model for each univariate time series
trains for a maximum of 10,000 epochs with a batch size of 256, and Adam as an optimizer with an initial learning rate of
0.0001. Early stopping is based on the validation set described in the main text with a patience of 10 epochs. For comparison,
we employ the ARIMA model, a commonly used benchmark [e.g.|[Siami-Namini et al.,[2018| |Riigamer et al.| 2023al]. We
specify aut o.arima such that the model complexity is found by a stepwise forward search based on the biased-corrected
version of Akaike’s Information Criterion (AICc), with initial lag values of p = 12 and p = 24 for the auto-regressive term,
and ¢ = 0 and ¢ = 3 for the moving average term. We set the maximum number of model search steps to 25. The final
model, which provides the log-scores obtained from the test set, is selected based on the ARIMA model with the lowest
AICc on the validation set. DRIFT runs 5.4 hours. The auto.arima function in comparison has a runtime of 53 min.

B.3.6 Benchmark Study

DR is defined by a parametric normal distribution with mean p = 2?21 Pu.; and standard deviation o = exp (Z?Zl Po, j) ,

with additive predictor structure as explained in the following paragraph. Training is done based on the negative log-likelihood.
TMs fit into our DRIFT framework as a special case and are parameterized as follows:

F = @0’1
P
¢~ (y,2) = aly) 0+ pj(x)),
j=1

st <60, <. < 91\/j+1,

where @ ; denotes the standard normal CDF and a a basis of polynomials in Bernstein form of order M. DRIFT is defined
by a location and scale effect outlined in the following paragraph. For ¢, see Section All models are trained using the
Adam optimizer with a maximum of 1000 epochs, early stopping with a patience of 50.

Predictor structure

* Structured For comparisons of structured models, we use univariate thin-plate regression splines for DR and TMs for
every feature and neural basis function splines as described in Section [B.T]

* Deep For deep model comparisons, we model the predictors of DR, TM and DRIFT using four different multi-layer
perceptron architectures:

— Hidden(100,ReL.U)-Dropout(0.1)-Hidden(1,Linear)

— Hidden(100,ReLU)-Dropout(0.1)-Hidden(100,ReLU)-Dropout(0.1)-Hidden(1,Linear)

— Hidden(20,ReL.U)-Dropout(0.1)-Hidden(1,Linear)

— Hidden(20,ReL.U)-Dropout(0.1)-Hidden(20,ReLU)-Dropout(0.1)-Hidden(1,Linear)
and for each method choose the best performing.

* Semi-structured For semi-structured comparisons, we use a combination of structured effects as outlined in the
structured predictor section and one of the four deep neural networks as outlined in the deep predictor section.

B.4 FURTHER RESULTS IN THE BENCHMARK STUDY

In case DRIFT and comparison methods define a deep or semi-structured model, we use a pre-defined set of four different
deep architectures for all methods. The results for these different model specifications are given in Tables BH2]
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Table 4: Comparison results for different datasets (rows) and structured methods using neural basis functions (columns) showing the
mean log-score (and standard deviation in brackets) based on a 10-fold cross-validation. The best methods per dataset are highlighted in
bold.

Dataset DR ™ DRIFT

Airfoil  -35(1.1) -3.1(0.1) -3.5(0.7)
Concrete  -3.3(0.1) -3.4(0.3) -3.2(0.3)
Diabetes  -8.5(2.5) -5.5(0.3) -5.5(0.2)
Energy  -2.9(0.3) -2.8(04) -23(0.1)

Fish -1.30.1) -14(0.2) -1.3(0.3)
Forestf  -2.0(0.3) -1.5(0.2) -1.4(0.4)
Ltfsid 7715 -63(04) -4.8(0.2)
Naval 4.1(1.0) 3.6(03) 51(03)
Real -1.40.4) -0.8(0.3) -1.2(1.1)
Wine 020.0) 0202 42024)
Yacht -1.1(02) -25(3.0) -0.8(0.1)

Table 5: Comparison results for different datasets (rows) and deep predictor methods (columns) showing the mean log-score (and
standard deviation in brackets) based on a 10-fold cross-validation. The best methods per dataset are highlighted in bold.

Dataset DR ™ DRIFT

Airfoil -440.2) -31(0.1) -3.2(0.3)
Concrete -3.7 (0.1) -3.4(0.2) -3.2(0.3)
Diabetes -8.3(1.2) -5.7(0.3) -5.2(0.2)
Energy -290.1) -3.1(0.2) -2.5(0.3)

Fish -1.30.1) -14(0.2) -1.3(0.3)
ForestF  -2.1(0.5) -1.6(0.2) -1.2(0.2)
Ltfsid 57(04) -63(04) -4.7(0.1)
Naval 47(0.1) 39(02) 5.0(02)
Real -150.6) -12(0.5 -0.9(0.7)
Wine 02(0.0) 0702 4224
Yacht 1.60.1)  -2.1(1.6) -0.8(0.1)

B.S COMPUTATIONAL ENVIRONMENT

All real-world examples were conducted on conventional laptops and without GPU support.
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