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Abstract

Durable interactions are ubiquitous in social network analysis and are increasingly
observed with precise time stamps. Phone and video calls, for example, are events
to which a specific duration can be assigned. We refer to this type of data encoding
the start and end times of interactions as “durational event data”. Recent advances
in data collection have enabled the observation of such data over extended periods of
time and between large populations of actors. Building on Relational Event Models,
we propose the “Durational Event Model” as a framework for studying durational
events by separately modeling event incidence and duration. To accommodate large-
scale applications, we introduce a fast, memory-efficient, and exact block-coordinate
ascent algorithm. Theoretical and numerical results demonstrate several advantages
of this approach over traditional Newton-Raphson-based methods. We apply the
model to physical and digital interactions among college students in Copenhagen.
Our empirical findings reveal that past interactions are the main drivers of physical
interactions, whereas digital interactions are more strongly influenced by friendship
ties and prior dyadic contact.

Keywords: Block Coordinate Algorithms, Large Event Data, Relational Event Model, MM
Algorithm

1 Introduction

Driven by the rapid process of digitization, the availability of large-scale online networks

is growing at a fast pace (Lazer et al., 2009). Contrasting the few hundred actors in a
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network measured previously, digitally measured networks encompass millions of actors

and edges and are relatively easy to collect (Wagner et al., 2021). The raw observations

underlying these large networks are often automatic logs with precise timestamps of events;

for instance, the time an email was sent. Complementing these digital networks, wearable

sociometric badges allow continuous measurements of physical interactions (Eagle and Pent-

land, 2006). The observed data encode massive networks that represent relations in various

contexts, such as patient transfer between hospitals (Vu et al., 2017) or instant messages

among people on the Microsoft Messenger platform (Leskovec and Horvitz, 2008).

These massive networks come with unique computational and inferential challenges. In

the literature, most algorithms for estimating models for network data are based on Markov

chain Monte Carlo (MCMC) simulation schemes (see, e.g. Jin and Liang, 2013; Hummel

et al., 2012; Everitt, 2012), which scale poorly to higher parameter dimensions and larger

networks (Roberts and Rosenthal, 2001). Since a growing network intuitively necessitates

an increasingly complex model, this error-prone regime is expected for large networks. One

way to mitigate these issues of larger networks is to base inference on an approximation of

the full likelihood (e.g. Raftery et al., 2012). In settings with latent variables, variational

approximations are often employed, turning sampling from a posterior via MCMC into

an optimization problem (e.g. Agarwal et al., 2025). For the corresponding optimization

problem, Minorization-Maximization (MM) algorithms, introduced by Lange et al. (2000),

were devised to obtain robust and scalable algorithms (Vu et al., 2013; Fritz et al., 2024).

Often, one can represent these networks as sequences of events between entities, ob-

served in almost real-time. Relational event models (REMs, Butts, 2008) provide a frame-

work for analyzing such events. We refer to (Fritz et al., 2020) for a recent review. Given

event data over the continuous time interval T := [0, T ] between the actors in the set
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A := {1, . . . , N}, the REM specifies a dyadic intensity for an event between the pair of

actors (i, j) ∈ B := {(i, j) : {i, j} ⊂ A and i ̸= j} at time t ∈ T:

λi,j (t | Ht,θ) = exp
(
θ⊤si,j(Ht)

)
. (1)

The summary statistics si,j(Ht) ∈ Rp for actors i and j are general functions of past events

occurring up to but not including time t, denoted by Ht. For instance, one entry of si,j(Ht)

might be the count of common partners between actors i and j until t. These statistics are

weighted by the parameter θ ∈ Rp, estimated from the observed data. This model class

was subsequently extended to account for spurious events (Fritz et al., 2023) and uncover

latent communities (Matias et al., 2018). An additive model where the exponential link

function is replaced by the identity function was employed in Vu et al. (2011a). This model

variant encompasses Hawkes processes as a special case (Fang et al., 2024; Cai et al., 2024).

To manage the potentially large size of event data, caching algorithms (Vu et al., 2011b)

and sampling-based procedures (Lerner and Lomi, 2020) have been introduced.

Although time stamps are often available for durable ties, relational event modeling has

so far almost exclusively focused on events without any duration. Many time-dependent

interactions, such as phone or Zoom calls, naturally have a temporal duration associated

with each observed event. We coin the term “durational event” to describe this particular

type of eveny. Differentiating between duration and incidence is crucial for understanding

the strength and dynamics of interactions. While duration captures interaction depth and

time investment, engagement and volume are reflected in frequency of occurrences, offering

complementary insights. One way to model such data is to treat the duration of an event

as an attached weight or mark and use a model for weighted events (Lerner et al., 2013).

This representation, on the other hand, disregards that the duration of an interaction is

an endogenous process, influenced by factors that arise during the interaction itself or by
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external factors, rather than being determined at the start of the interaction.

Stadtfeld et al. (2017) took first steps toward analyzing a related data structure by

proposing a model for coordination ties. These ties are a particular case of durational

events, where the creation of a link between two actors is a two-sided decision process, in

which both actors have to pick each other out of all possible actors. Still, their application

focused solely on the incidence of events, disregarding their duration. Hoffman et al. (2020)

introduced a model for group-based interactions, where actors can join and leave groups.

Rastelli and Fop (2020) propose a stochastic block model for durational events.

Despite these initial approaches, there is a gap in the literature on how to model gen-

eral durational events beyond the discussed special cases. We address this limitation by

introducing the Durational Event Model (DEM) as a general framework for analyzing du-

rational events (Section 2). The proposed model faces the aforementioned challenges of

large-scale networks, since its number of parameters grows with the number of actors and

length of the observed time-frame. Thus, standard techniques, such as Fisher scoring or

the Newton-Raphson method, are impractical for estimation in most applications. We

develop in Section 3 a block-coordinate ascent method based on separate minorization-

maximization and closed-form steps to overcome this limitation. The proposed estimation

algorithm naturally extends to REMs (as shown in the application in the Supplementary

Material B.4). In Section 4, we assess the performance of our algorithm in a simulation

study. Next, we apply our model class to physical and digital interaction data from the

Copenhagen Networks Study (Sapiezynski et al., 2019) in Section 5. Finally, we discuss

possible future extensions in Section 6. We provide the DEM package for R (R Core Team,

2024) as an implementation of our method.
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2 Durational Event Model

A durational event between the pair of actors (i, j) ∈ B, beginning at time b ∈ T and ending

at time e ∈ T, with b < e, is represented by the four-dimensional tuple d = (i, j, b, e).

Henceforth, we focus on undirected durational events, although extending the methodology

to directed events is straightforward. We define by U0→1(t) ⊆ B the set of possible actor

pairs that may experience the start of a durational event at t ∈ T (i.e., change from a “not

interacting” status, denoted with 0, to an “interacting” status, denoted with 1). Similarly,

U1→0(t) ⊆ B is the set of possible actor pairs that may experience the end of a durational

event at t ∈ T. If durational events correspond to phone calls, actors may only engage in

one interaction at a time, hence U0→1(t) ̸= B and U1→0(t) ̸= B holds. We assume that

these sets are known for t ∈ T.

2.1 Model Specification

To model the dynamics of durational events, we follow previous research (Perry and Wolfe,

2013; Vu et al., 2011a; Fritz et al., 2023) and specify the durational event model as a

multivariate counting process. Deviating from previous approaches for REMs, we define

two separate counting processes: the formation process, N0→1
i,j (t), counting the number

of times that i and j have started an interaction up to time point t; and the dissolution

process, N1→0
i,j (t), counting the number of times that the actors have stopped interacting

before and up to t. Together, the two stochastic processes count the frequency with which

actor pairs transition between the states “not interacting” and “interacting”.

The stochastic variation of N0→1
i,j (t) and N1→0

i,j (t) is characterized by their respective

instantaneous probabilities of a jump. We define these two intensities as the incidence

intensity, λ0→1
i,j (t | Ht), and the duration intensity, λ1→0

i,j (t | Ht). In this paper, we assume
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that N0→1
i,j (t) and N1→0

i,j (t) with (i, j) ∈ B are non-homogeneous Poisson processes.

We expect the counting processes to be dependent on one another over time. For

instance, if the actor pairs (i, h) and (j, h) ∈ B have previously interacted, the intensity

λ0→1
i,j (t) may increase due to the shared connection with actor h. The intensity of two actors

i and j in A to interact may thus be influenced by the past in numerous ways:

(a) their previous interactions;

(b) past interactions involving common neighbors;

(c) ongoing interactions within the broader population.

Therefore, λ0→1
i,j (t) and λ1→0

i,j (t) are functions of the observed history of the data, up to but

not including t:

λ0→1
i,j (t | Ht,θ

0→1) = exp
(
α0→1 s0→1

i,j (Ht) + β0→1
i + β0→1

j + f(t,γ 0→1)
)
,

λ1→0
i,j (t | Ht,θ

1→0) = exp
(
α1→0 s1→0

i,j (Ht) + β1→0
i + β1→0

j + f(t,γ 1→0)
) (2)

for (i, j) ∈ U0→1(t) or U1→0(t), respectively, where

• s0→1
i,j (Ht) = (s0→1

i,j,1 (Ht), . . . , s
0→1
i,j,P (Ht))

⊤ ∈ RP are summary statistics for the pair of

actors (i, j) that are functions of Ht. These summary statistics capture any depen-

dence of the intensity on both endogenous and exogenous processes derived from the

past. In this context, endogenous processes originate from events being modeled,

such as the number of common partners actors i and j had up to t, while exogenous

processes encompass any covariate-driven processes that, for example, capture ho-

mophily based on gender. A more detailed description of these statistics is provided

in Section 2.2.

• α0→1 = (α0→1
1 , . . . , α0→1

P ) ∈ R1×P is the parameter vector determining the respective

effects of the statistics s0→1
i,j (Ht).
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• β0→1 = (β0→1
1 , . . . , β0→1

N )⊤ ∈ RN is the parameter vector capturing all degree-related

characteristics, analogous to degree correction or popularity terms that are used in

other network models (see, e.g., Chatterjee et al., 2011). We can interpret these

parameters as a sociality effect, since they determine the overall activity level of each

actor.

• f : T × RQ 7→ R with f(t,γ0→1) =
∑Q

q=1 γq I(cq−1 ≤ t < cq) captures temporal

variations in the data. The indicator function I(cq−1 ≤ t < cq) takes the value 1 if

cq−1 ≤ t < cq and 0 otherwise, while the parameter vector γ0→1 = (γ0→1
1 , . . . , γ0→1

Q ) ∈

RQ determines the value of f within the Q segments. To ensure identifiability, we

impose γ0→1
1 = 0. Sections 5 and Supplementary Material B.3 provide concrete

examples and sensitivity analyses for the specification of this step-function.

The quantities governing the duration intensity are defined analogously. We collect the

parameters of the incidence and duration intensities in two parameter vectors: θ0→1 :=

(α0→1,β0→1,γ 0→1) and θ1→0 := (α1→0,β1→0,γ 1→0). Both intensities are piecewise con-

stant functions, which can change at two types of time points: the time points where the

baseline intensity changes, denoted by the set D := {c1, . . . , cQ} and the time points where

events occur, denoted by the set C := {t1, . . . , tM}. Here, Q is the number of time points

where the baseline intensity changes, whereas M denotes the number of observed dura-

tional events. By setting λ1→0
i,j (t|Ht,θ

1→0) = ∞ for all pairs at all times, we obtain the

REM of (1) as a special case of (2).

We refer to the model defined by (2) as the Durational Event Model (DEM). This

model is related to the Separable Temporal Exponential Random Graph Model (STERGM)

introduced by Krivitsky and Handcock (2014), which similarly models tie formation and

dissolution. While the STERGM relies only on discrete-time network snapshots, our frame-
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work operates in a continuous-time setting, allowing for a more granular representation of

relational dynamics.

2.2 Summary Statistics

The statistics s 0→1
i,j (Ht) and s 1→0

i,j (Ht) characterize the influence of past interactions on the

likelihood of future events. Careful consideration is necessary regarding how this influence

is specified. Aalen and Gjessing (2007) note that a valid counting process must have an

intensity function that remains finite at all times to prevent an explosion where the intensity

diverges. Applying the Feller criterion (Aalen et al., 2008, Sect. 8.6.3), it becomes apparent

that a counting process Ni,j(t) is non-explosive for Cox-type models such as (2) if all past

event counts are log( ·+1)-transformed. Accordingly, we define all summary statistics that

relate past interactions to future interactions on the log( ·+ 1) scale.

With two key exceptions, the summary statistics can then be defined similarly to their

counterparts in REMs (see, Fritz et al., 2023; Butts and Marcum, 2017; Butts, 2008). First,

we assume that the incidence and duration models may rely on distinct sets of statistics.

Bellow, we introduce statistics which can be incorporated into either s0→1
i,j (Ht), s1→0

i,j (Ht),

or both. Second, the statistics can leverage additional information from durational events,

such as which actors are currently interacting and the elapsed time since an interaction

began. Let ui,j(t) be a binary indicator whether actors i and j have started an interaction

that is still ongoing at time t, and let vi,j(t) indicate whether they have interacted before

time t. The elapsed time since actors i and j last interacted is ∆i,j(t) = t − ti,j with

ti,j < t. Given these quantities, we provide a non-exhaustive list of summary statistics

used in simulations and the application, accompanied by illustrations in Figure 1:

• si,j,CCP (Ht) = log
(∑

h/∈{i,j} ui,h(t)uh,j(t) + 1
)
: current common partner statistic
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...
...

...
...

Figure 1: Graphs illustrating the proposed summary statistics. Dashed lines ( ) refer

to transitions from 0 → 1, while the wiggly line ( ) relates to 1 → 0. Other observed

interactions are drawn as solid lines, in black if they are currently interacting actors ( )

and gray if the event occurred sometime in the past ( ).

representing the number of currently active partners shared by i and j at time t;

• si,j,GCP (Ht) = log
(∑

h/∈{i,j} vi,h(t) vh,j(t) + 1
)
: general common partner statistic

representing the number of common partners of i and j up to time t;

• si,j,NI(Ht) = log(Ni,j(t) + 1): number of interactions statistic representing the cu-

mulative sum of interactions between i and j up to time t;

• s1→0
i,j,NI(Ht) = log(∆i,j(t) + 1): current interaction statistic representing the duration

of the current interaction between actors i and j until time t;

• si,j,z(Ht) = zi,j : dyadic covariate effect, where, e.g., zi,j = |xi,1 − xj,1| or zi,j =
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I(xi,2 = xj,2) depending on whether the effect is based on a categorical, x1 =

(x1,1, . . . , xN,1), or continuous, x2 = (x1,2, . . . , xN,2), exogenous covariate.

Parallels between the DEM and proportional hazard model (Cox, 1972) facilitate the in-

terpretation of the corresponding coefficients. Consider the incidence intensities of two

durational events, i.e., d1 = (i, j, t, e) and d2 = (h, k, t, e). Assume that all summary statis-

tics are identical with the exception that the pth entry of the summary statistics for d1 is

one unit higher than for d2. In this case, the relationship between their intensities to start

an interaction is given by:

λ0→1
i,j (t|Ht,θ

0→1) = exp(α0→1
p )λ0→1

h,k (t|Ht,θ
0→1) . (3)

For α0→1
p > 0, observing d1 at time t is exp(α0→1

p ) times more likely than d2.

As stated in Section 2.2, statistics involving counts of past events, such as the number

of current common partners between actors i and j until time t, are log( ·+1)-transformed.

Similar to geometrically weighted statistics in the context of ERGMs (Hunter, 2007), this

transformation formalizes the intuition that the initial change in a statistic has the greatest

impact, while subsequent changes have diminishing returns. A change from l to l+1 on the

original scale of a log( · +1)-transformed statistic affects the intensity by the multiplicative

factor ((l + 2)/(l + 1))α
0→1
p . Setting l = 0, the quantity 2α

0→1
p represents the multiplicative

effect of the first unit increase of a statistic on its original scale and is therefore a valuable

tool to interpretat the model. For s0→1
i,j,p (Ht) = s0→1

i,j,GCP (Ht), the first common partner has a

the multiplicative effect 2α
0→1
p , while the 20th common partner has the multiplicative effect

(21/20)α
0→1
p = 1.05α

0→1
p on the incidence intensity between actors i and j.
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3 Scalable Block-Coordinate Ascent Algorithm

Given the paths of N 0→1
i,j (t) and N1→0

i,j (t) with (i, j) ∈ B and t ∈ T, we propose a scalable

method to estimate θ0→1 and θ1→0 maximizing the log-likelihood

ℓ ⋆(θ0→1,θ1→0) ∝ ℓ 0→1(θ0→1) + ℓ1→0(θ1→0). (4)

The log-likelihood of each sub-model has the following form

ℓ(θ) =
∑

t∈D∪C

∑
(i,j)∈U(t)

yi,j,t log ((t− t⋆)λi,j (t | Ht,θ))− (t− t⋆)λi,j (t | Ht,θ) , (5)

where θ is θ0→1 or θ1→0 and yi,j,t ∈ {0, 1} indicates whether a formation or dissolution

event occurred between actors i and j in the time interval from t⋆ to t. Here, t⋆ denotes

the most recent time point before t in the set D ∪ C. For the chronologically first time

point in this set, we set t⋆ = 0. From (4), it follows that the log-likelihood is separable

with respect to θ0→1 and θ1→0. We can thus independently estimate the incidence and

duration model using the same estimation procedure. Let θ = (α,β,γ), U(t), ℓ(θ), and

si,j(Ht) correspond to either θ0→1 or θ1→0, ℓ 0→1(θ 0→1) or ℓ1→0(θ 1→0), U0→1(t) or U1→0(t),

and s 0→1
i,j (Ht) or s

1→0
i,j (Ht), depending on estimating θ0→1 or θ1→0. The estimate of θ in

the kth iteration of θ is denoted by θ(k).

The Newton-Raphson method is the state-of-the-art technique for estimating θ in REMs

(Butts, 2008; Stadtfeld et al., 2017). The algorithm updates θ(k+1) by the following rule:

θ(k+1) = θ(k) − g(θ(k))Σ(θ(k))−1, (6)

where g(θ(k+1)) := ∇θ ℓ(θ)
∣∣
θ=θ(k+1) ∈ RP+N+Q and

Σ(θ(k+1)) := ∇2
θ ℓ(θ)

∣∣
θ=θ(k+1) ∈ R(P+N+Q)×(P+N+Q) denote the gradient and Hessian of (5)
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evaluated at θ(k+1) ∈ RP+N+Q, respectively. We partition Σ(θ) along α,β, and γ:

Σ(θ) =


Σα,α Σα,β Σα,γ

Σ⊤
α,β Σβ,β Σβ,γ

Σ⊤
α,γ Σ⊤

β,γ Σγ,γ ,

 (7)

where, e.g., the matrix Σα,β ∈ R|α|×|β| defines the block of the Hessian matrix pertaining

to the coefficients α and β.

In most real-world settings, data is available across many actors (large N) and over an

extensive time interval (large Q), making the estimation θ via (6) impractical. Evaluating

g(θ(k)) and Σ(θ) involves O(N2 ×Q×M) summands, while inverting Σ(θ) has a compu-

tational complexity of O((N +Q+M)3), making it impractical for large-scale applications.

To bypass this computational burden, we devise a block-coordinate ascent algorithm to

update α, β, and γ in blocks:

Step 1: Set α(k+1) such that ℓ(α(k+1),β(k),γ (k)) ≥ ℓ(α(k),β(k),γ (k)) by a Newton-

Raphson update.

Step 2: Set β(k+1) such that ℓ(α(k+1),β(k+1),γ (k)) ≥ ℓ(α(k+1),β(k),γ (k)) by a

Minorize-Maximization update.

Step 3: Set γ (k+1) such that ℓ(α(k+1),β(k+1),γ (k+1)) ≥ ℓ(α(k+1),β(k+1),γ (k)) by a

closed form update.

This blockwise algorithm comes with several advantages:

1. The complexity per iteration compared to the Newton-Raphson update in (6) is

reduced from O((N+Q+M)3) to O(N2+M×N+M). This improvement is achieved

by restricting matrix inversions to the first step, leveraging the low dimensionality
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of α to ensure scalability with respect to N and Q. In that step, we also employ

coaching algorithms, akin to those introduced in Vu et al. (2011b).

2. There is no need to store large matrices at any step, reducing memory usage.

3. Any stepwise algorithm iterating according to the scheme detailed above will be ex-

act and converge to the maximum likelihood estimator θ⋆, defined as the argument

of the maximum of ℓ(θ) over θ ∈ RP+N+Q. This property holds since the likeli-

hood function (5) can be decomposed into sums of likelihoods of Poisson-distributed

random variables (Fritz et al., 2023). According to standard theory for exponential

families (Barndorff-Nielsen, 1978), ℓ(θ) is then a concave function. Therefore, we

obtain global convergence, θ(k) → θ⋆ with k → ∞ for any starting value θ(0). This

result aligns with corollaries from more general results in Razaviyayn et al. (2013).

4. Contrasting the Newton-Raphson method, our algorithm enjoys the ascent property,

ℓ(α(k+1),β(k+1),γ (k+1)) ≥ ℓ(α(k),β(k),γ (k)). This property makes the algorithm

robust and reliable.

5. Our algorithm naturally extends to standard REMs.

Since the convergence of the algorithm is independent of its initialization, we seed our

algorithm by setting θ(0) = 0P+N+Q without loss of generality. The vector 0n ∈ Rn with

n ∈ {1, 2, . . .} is defined as a n-dimensional vector filled with zeros. We declare convergence

once both ||θ(k+1) − θ(k)||2 and |(ℓ(θ(k+1)) − ℓ(θ(k))) / ℓ(θ(k))| are below 10−3. We describe

each step of the algorithm in the ensuing paragraphs.

Step 1: Update of α. To employ a Newton-Raphson update for α as in (6), only slight

adaptations are required. Specifically, we evaluate ∇α ℓ(α,β,γ)
∣∣
α=α(k) ∈ RP and

13



∇2
α ℓ(α,β,γ)

∣∣
α=α(k) ∈ RP×P given by

∇α ℓ(α,β(k),γ (k))
∣∣
α=α(k) =

∑
(i,j)∈B

∑
t∈C

si,j(Ht)

yi,j,t −
t∫

t⋆

λi,j(u | Hu,θ
(k)) du


∇2

α ℓ(α,β(k),γ (k))
∣∣
α=α(k) = −

∑
(i,j)∈B

∑
t∈C

si,j(Ht)
⊗2

 t∫
t⋆

λi,j(u | Hu,θ
(k)) du

 ,

(8)

where si,j(Ht)
⊗2 := si,j(Ht) si,j(Ht)

⊤. Since the intensity function is piecewise-constant,

the integral
∫ t

t⋆
λi,j(u | Hu,θ) du can be computed exactly. Both terms in (8) contain

O(N2×M) summands, eliminating the dependence on the number of change points of the

baseline intensity of (5). Similar to the coaching algorithms introduced in Vu et al. (2011b),

we only update the summary statistics corresponding to pairs affected by d after observing

the event d at time t. Since all summary statistics in Section 2.2 are defined locally, we

only need to update a small number of pairs, typically of order O(1) each time an event

occurs. In most real-world applications max(N2 +M,P 3) = N2 +M holds, reducing the

complexity of this step to O(N2 +M).

Step 2: Update of β. A Newton-Raphson update for β is computationally infeasible

due to the dimension of β being N . To avoid this bottleneck, we derive a surrogate

function that is easier to optimize and whose maximizer guarantees ℓ(α(k+1),β(k+1),γ (k)) ≥

ℓ(α(k+1),β(k),γ (k)). This strategy is in the general framework of Minorize-Maximization

(MM) algorithms pushed forward in Lange et al. (2000) and Hunter and Lange (2004).

First, we restate ℓ(α(k+1),β,γ (k)), which is a function of β with fixed α = α(k+1) and

γ = γ(k), by

ℓ(α(k+1),β,γ (k)) ∝
∑

(i,j)∈B

(log pi + log pj)

(∑
t∈C

yi,j,t

)
− pi pj

(∑
t∈C

pi,j,t

)
, (9)

where

pi,j,t :=

 t∫
t⋆

exp
(
f(u,γ(k))

)
du

 exp
(
α(k+1) si,j(Ht)

)
14



and pi := exp(βi) for t ∈ C and (i, j) ∈ B. By the inequality of arithmetic and geometric

means, we get

pi pj ≤
p
(k)
j

2 p
(k)
i

p2i +
p
(k)
i

2 p
(k)
j

p2j , (10)

which enables us define a surrogate function m(β | α(k+1),β(k),γ (k)):

ℓ(α(k+1),β,γ (k)) ≥
∑

(i,j)∈B

(log pi + log pj)

(∑
t∈C

yi,j,t

)

−

(
p
(k)
j

2 p
(k)
i

p2i +
p
(k)
i

2 p
(k)
j

p2j

) (∑
t∈C

pi,j,t

)

=: m(β | α(k+1),β(k),γ (k)).

Since equality holds in (10) with p = p(k) and p(k) := exp(β(k)), the following two

properties hold for m(β | α(k+1),β(k),γ (k)):

m(β | α(k+1),β(k),γ (k)) ≤ ℓ(α(k+1),β,γ (k)) for all β ∈ RP

m(β(k) | α(k+1),β(k),γ (k)) = ℓ(α(k+1),β(k),γ (k)).

(11)

Therefore, m(β | α(k+1),β(k),γ (k)) is a minorizer of ℓ(α(k+1),β,γ (k)) in β(k). Applying

(11) demonstrates that setting β(k+1) to the value maximizing m(β | α(k+1),β(k),γ (k)) with

respect to β, guarantees ℓ(α(k+1),β(k+1),γ (k)) ≥ ℓ(α(k+1),β(k),γ (k)).

The surrogate function m(β | α(k+1),β(k),γ (k)) is separable with respect to all entries

of β. Setting ∇β m(β | α(k+1),β(k),γ (k))
∣∣
β=β(k+1) = 0 then yields for i ∈ A the following

updates:

β
(k+1)
i = log


√√√√√√√p

(k)
i

∑
j ̸= i

∑
t∈C

yi,j,t∑
j ̸= i

∑
t∈C

pi,j,t p
(k+1)
j

 . (12)

Applying (12) for all N actors has the algorithmic complexity O(N2 +M ×N).

Step 3: Update of γ. With qi,j,t :=
∫ t

t⋆
exp(α(k+1) si,j(Hu) + βi + βj) du and qt :=

exp(f(t,γ)) for t ∈ D and (i, j) ∈ B, we can sort the summands of ℓ(α(k+1),β(k+1),γ)
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according the intervals defined through the timepoints where the baseline intensity changes,

0 = c0 < c1 < . . . < cQ:

ℓ(α(k+1),β(k+1),γ) ∝
∑

(i,j)∈B

Q∑
q=1

∑
cq−1 ≤ t< cq

yi,j,t log qt − qt qi,j,t. (13)

This function is separable with respect to all coordinates of γ and the closed-form solution

for its qth entry is

γ
(k+1)
q = log


∑

(i,j)∈B

∑
cq−1 ≤ t< cq

yi,j,t∑
(i,j)∈B

∑
cq−1 ≤ t< cq

qi,j,t

 . (14)

Employing update (14) for q = 1, . . . , Q has the algorithmic complexity of O(N2 +M).

Uncertainty Quantification. Inference is possible in our model for fixed N and Q

by standard results based on the inverse Fisher information evaluated at the converged

estimate of θ. Note that the Fisher information corresponds to the Hessian given in (7) for

the DEM. Under suitable regularity conditions similar results hold also in the regime that

Q or N grow (see, Portnoy, 1988; He and Shao, 2000). In most application, the interest

mainly lies in quantifying the uncertainty of α. Therefore, we consider β and γ to be

nuisance parameters and only evaluate the top left P ×P submatrix of the inverse Hessian,

Σ(θ), which we denote by Λ(θ) ∈ RP×P . Applying Theorem 8.5.11 in Harville (1997),

Λ(θ) is given by:

Λ(θ) =
(
Σα,α −Xα,β,γ Y

−1
β,γ X

⊤
α,β,γ

)−1
, (15)

with

Xα,β,γ =
(
Σα,γ Σ⊤

α,β

)
and Yβ,γ =

Σ−1
γ,γ Σ⊤

β,γ

Σβ,γ Σβ,β

 ,

where all needed terms are defined in (7).
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4 Simulation Study

Through three simulation studies, we illustrate the performance of our methodology with

exogenous continuous and discrete covariates. The continuous covariate x1 = (x1,1, . . . , xN,1)

is drawn from a standard normal distribution, i.e., Xi,1
i.i.d∼ N (0, 1) independently for i =

1, . . . , N . The discrete covariate x2 = (x1,2, . . . , xN,2) is sampled independently from a cat-

egorical distribution with three equally probable outcomes. Three summary statistics are

chosen for the incidence and duration: s0→1
i,j (Ht) = (si,j,CCP (Ht), si,j,z1(Ht), si,j,z2(Ht))

⊤

and s1→0
i,j (Ht) = (si,j,NI(Ht), si,j,z1(Ht), si,j,z2(Ht))

⊤, where zi,j,1 = |xi,1 − xj,1| and

zi,j,2 = I(xi,2 = xj,2). The true parameters are fixed as follows α 0→1 = (−1/2, 1, 1/2)

and α1→0 = (1/2, 1/2, 1/2). These parameter values guarantee a balance between the

lengths of interactions and non-interactions for all pairs of nodes, making the dataset real-

istic and suitable for inference. The true popularity parameters for each actor i = 1, . . . , N

are sampled from Gaussians:

β0→1
i

i.i.d∼ N (−6− 1/10 log(N), 1)

β1→0
i

i.i.d∼ N (8/5− 1/10 log(N), 1).

The popularity parameters decrease on average with increasing N , implying sparsity of

observed events as the number of actors N grows. We set the time interval as T = [0, 10.000]

with nine equally spaced change points c1, ..., c9. The true values of the baseline function,

γ0→1 = γ1→0, are linearly decreasing from zero to −1/10.

We assess the finite-sample performance of our estimators using three measures: the

average point estimate (AVE), the root-mean-squared error (RMSE), and the coverage

probabilities (CP), defined in the Supplementary Material A.1. Once S = 1.000 datasets

are generated according to the algorithm detailed in Supplementary Material A.2, we run

our inference algorithm of Section 3 independently on each dataset to obtain S experiments.
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Table 1: Simulation study 1: for each effect, we report the AVE, RMSE, and CP.

Summary Statistic α AVE RMSE CP

Incidence (α0→1)

Current Common Partner −.5 −.510 .074 .951

Continuous Cov. 1.0 .998 .010 .944

Categorical Cov. .5 .499 .010 .957

Duration (α1→0)

Number Interaction .5 .500 .010 .945

Continuous Cov. .5 .502 .011 .939

Categorical Cov. .5 .501 .011 .944

Simulation Study 1: Parameter Estimation and Model Selection. In the first

simulation study, we assess how accurately our novel algorithm recovers the correct model

for N = 500 actors. Once the model structure is inferred, we check if the inference on the

parameter values is accurate.

We apply the following greedy model selection procedure: first, we fit a simple model

where the incidence model only includes the current common partner, and the duration

model has no covariates. Then, we calculate the Akaike Information Criterion for this

initial model. We proceed by adding covariates to the incidence structure in a step-wise

fashion, one at a time. For each fitted model, we again calculate the AIC and retain

the new model as optimal if a better criterion value is obtained. Once we converge to

an optimal incidence model structure, we apply an analogous procedure to the duration

model. The model achieving the highest value of the criterion, overall, is retained as the
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Figure 2: Simulation Study 1: Quantile-quantile plots for the incidence (top row) and

duration model (bottom row) comparing the theoretical quantiles of a standard normal

distribution with the sample quantiles of z(s) = Λ(θ̂(s))
1/2(α̂(s) −α) for s = 1, ..., 1.000.

optimal inferred model. The inferred optimal model coincides with the data-generating

model in all of the datasets generated in this experiment.

The results in Table 1 demonstrate that all parameters encompassed in α are estimated

with high accuracy. The empirical coverage probability closely matches the nominal 0.95

level, indicating reliable uncertainty quantification. This suggests accurate and robust

inference. This finding is further supported by the quantile-quantile plots in Figure 2,

which illustrate a close alignment of sample quantiles with theoretical normal quantiles.

For the current common partner statistic, we note a slightly higher RMSE compared to

the other statistics. This phenomenon may stem from the statistic using less data by only

relying on the current status of the network rather than its entire history.
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Figure 3: Simulation Study 2: RMSE of the estimates of α (first column), β (second

column), and γ (third column) over all simulations for the incidence (top row) and duration

model (bottom row).

Simulation Study 2: Estimation Error under Increasing Actors. We rely on an

analogous setup as in Simulation Study 1, with the only difference being that the number

of actor varies from 50 to 700. We assess the estimation error of all parameters.

For both the incidence and duration models, Figure 3 shows that the RMSE of all

estimated parameters decreases as the number of actors N increases. The baseline inten-

sity and summary statistics coefficients exhibit lower estimation error than the popularity

parameters, whose dimensionality grows with N . This behavior is expected due to the

increasing dimension of the popularity effects. These results provide empirical evidence for

the consistency of our estimators in regimes where the number of parameters is a function

of the number of actors.
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Figure 4: Simulation Study 3: Comparison of computational time (left) and memory needed

for estimation (right) for different number of actors of our proposed three-step estimator

and the common Newton-Raphson estimator.

Simulation Study 3: Computational Improvement. Last, we compare the compu-

tational efficiency of our proposed block-coordinate algorithm (Section 3) to the Newton-

Raphson approach. We measure computational speed by the execution time (in seconds)

for estimating the model on a single dataset. Memory allocation is assessed by each algo-

rithm’s peak random access memory usage. The peak memory usage reflects the largest

dataset a system can handle.

Figure 4 visualizes the execution time and memory usage for both algorithms under

increasing number of actors. The largest dataset we consider has only up to 175 nodes,

beyond which the Newton-Raphson algorithm becomes impractical. The results provide

empirical evidence that our block-coordinate ascent algorithm improves upon state-of-the-

art methods by several orders of magnitude. From the right plot in Figure 4, it is evident

that our proposed algorithm scales more efficiently than the Newton-Raphson method.

Additionally, our approach exhibits lower variability in computing time and memory usage.

Both findings align with the theoretical complexity reduction stated in Section 3.
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5 Application to Physical and Digital Interactions

We demonstrate the DEM in an application to the Copenhagen Networks Study (Sapiezyn-

ski et al., 2019). The study, conducted between 2012 and 2013, tracked 682 first-year

students at the Technical University of Denmark over approximately 27 days. This data

includes various forms of interactions, such as co-location (measured via Bluetooth), social

media interactions (friendships on Facebook), and other communication channels (phone

calls and text messages). The available data enables us to compare the evolution of physical

and digital interactions between the same actors over time. This enables the identification

of how individuals prioritize different relationships and the circumstances under which they

rely on digital communication and face-to-face interactions. By doing that, we are able to

obtain novel insights into how human behavior unfolds simultaneously over multiple chan-

nels (Stopczynski et al., 2014). In particular, we study digital communication through call

data, while co-location events act as a proxy for physical activities. By distinguishing when

interactions begin and end, we can (i) fully utilize the available data and (ii) assess whether

similar factors drive both the incidence and duration of events. Text messaging events, in

contrast, are instantaneous events without duration that naturally fit into the REM de-

scribed in (1). We showcase how the computational techniques developed in Section 3

apply to this setting in the Supplementary Materials B.4.

5.1 Data

Several studies have used data from the Copenhagen Networks Study for descriptive anal-

yses. Sekara et al. (2016) leverage this dataset to demonstrate how interaction data with

fine-grained temporal resolution can be used to examine group formation. Building on

the foundational work of Granovetter (1973), Ureña-Carrion et al. (2020) investigate the
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strength of interactions with the data. Contrary to the standard practice to quantify the

strength of ties by the number or duration of interactions, the authors employed descrip-

tive measures, such as dynamic topological overlap between actors, to study the strength of

weak ties. Using similar data from the Telefonica telecommunications company, Miritello

et al. (2013) explore how interaction patterns change as personal networks expand. That

said, no probabilistic models, such as REMs, have been applied to this dataset.

Physical Interactions via Bluetooth Scans. Physical interactions are quantified by

co-location events, which, in turn, are measured via Bluetooth communication between

mobile devices. Bluetooth scans run every five minutes determine when people are close to

one another. We define a co-location event as as the presence of two individuals in at least

two consecutive scans. Therefore, a physical interaction event dP = (i, j, b, e) indicates that

student i was in the same place as student j from time b to e.

Digital Interactions via Call Data. The call data between students serves as a proxy

for digital communication. A call event dD = (i, j, b, e) encodes a call between student i

and student j between the time points b and e. The sets U0→1(t) and U1→0(t) are defined

to ensure that no student can be active in multiple simultaneous calls.

Covariate Information. Participants provided time-invariant information on their Face-

book friends and gender. However, this information is missing for a subset we exclude from

the study. Assuming these values are missing completely at random, this exclusion does

not affect the validity of our inferential conclusions. Additionally, the popularity estimates

β0→1
i and β1→0

i of actor i for the physical and digital communication are only identifiable if

actor i participated in at least one durational event in both communication modes (physical

and digital). Applying these inclusion criteria results in a final dataset of 155,316 physical
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(a) Physical (Co-location) (b) Digital (Call)

Figure 5: Application: Kernel-density estimator of cumulative durational events per actors

in the of physical (A) and digital interactions (B).

interactions and 4,152 digital interactions among N = 400 actors. Text messages were also

collected between study participants.

5.2 Model Specification

To examine endogenous effects, we use summary statistics from Section 2.2. We evaluate

whether actors i and j currently share and have previously shared a common partner, and

we account for pairwise inertia by including the number of past interactions as statistics.

For call events, having a common partner at the time of the event is impossible, as an

individual can participate in only one phone call at a time. Accordingly, we exclude the

current common partner terms from the corresponding incidence and duration models. We

incorporate covariates related to Facebook friendships (z1 = (zi,j,1), where xi,j,1 = 1 if

actors i and j are Facebook friends) and gender (x2 = (xi,2), where xi,2 = 1 if actor i is

female) as dyadic and monadic statistics, respectively: zi,j,1 = xi,j,1 for dyadic relationships
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and zi,j,2 = I(xi,2 = xj,2) for gender homophily.

Figure 5 presents density estimators of the number of interactions individual actors are

involved in for each event network. These distributions indicate substantial heterogeneity

among actors in both settings. Including popularity estimates allows us to account for

this in a flexible manner. Interaction frequencies are expected to fluctuate considerably

throughout the day since students are more likely to interact during the daytime hours.

To accommodate this, we allow the baseline function f(t,γ) to change hourly, resulting

in approximately Q = 672 equidistant change points1. We conduct a sensitivity analysis

in Supplementary Material B.3 to show that allowing f(t,γ) to change every two hours

does not substantially affect the results. In total, 1,083 = 11(P ) + 400(N) + 672(Q)

parameters characterize our model. While solving this problem is infeasible with state-of-

the-art techniques, our novel scalable block-coordinate ascent algorithm enables efficient

model estimation within a few minutes on a standard laptop.

5.3 Results

The parameter estimates from the DEM reveal distinct patterns governing the incidence

and duration of physical and digital interaction events. The estimates of α0→1 and α1→0 are

provided in Table 2, whereas the popularity estimates β0→1 and β1→0 are shown in Figure

6. We conduct a post hoc analysis in Supplementary Material B.2 examining temporal

trends and seasonal variations in the baseline intensities.

1If no interaction is observed during a particular hour, we assume that the baseline did not change from

the previous hour. Therefore, the number of parameters in γ fluctuates slightly between each estimated

model.
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Table 2: Parameter estimates (α̂) and corresponding standard errors (SE) of the Durational

Event Model applied to physical (co-location, columns 2-4) and digital (call, columns 5-7)

interaction data. The column 2α̂ shown for statistics transformed by log( ·+ 1) represents

the effect of the first change in the respective statistic.

Physical (Co-location) Digital (Call)

Summary Statistic α̂ SE 2α̂ α̂ SE 2α̂

Incidence (α̂0→1)

Current Common Partner 2.867 .006 7.295

General Common Partner .726 .007 1.654 .224 .125 1.168

Number Interaction 1.129 .005 2.187 1.631 .039 3.097

Friendship Match .383 .010 5.687 .116

Both Female −.021 .010 .203 .085

Duration (α̂1→0)

Number Interaction −.158 .005 .896 −.274 .073 .827

Current Interaction −.102 .002 .932 −.053 .024 .964

Current Common Partner −.312 .006 .806

General Common Partner .080 .009 1.057 .518 .186 1.432

Friendship Match −.535 .010 −.337 .464

Both Female −.018 .010 −.227 .320

Summary Statistics. In the incidence model, shared current common partners are a

key determinant of physical interactions. The first shared partner between actors i and

j increases the corresponding event intensity by a multiplicative factor of 7.295. This
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coefficient confirms that joining an existing group of people is much more likely than starting

a physical interaction with a single actor. General common partners also affect the event

intensities. However, their effects are moderate: they increase the incidence intensity

of physical interactions by a multiplicative factor of 1.654 and of digital interactions by

1.168 in the same setting. Besides these triadic closure effects, repeated interactions affect

the incidence intensity. The first interaction between arbitrary actors i and j increases

λ0→1
i,j (t | Ht,θ

0→1) of physical and digital interactions by multiplicative factors of 2.187 and

3.097, respectively. By the interpretation shown in (3), a shared Facebook friend affects the

incidence intensity of digital communication by the multiplicative factor exp(5.687) ≈ 295.

The incidence intensity of physical meetings is increased only by the factor exp(.383) ≈ 1.46

in the same setting. We estimate divergent effects for gender homophily. The incidence

intensity of digital interaction between two female actors is significantly lower than for pairs

where both actors are not female. However, for physical interactions, we do not observe

this significant difference. In general, the results of the model for physical interactions

based on co-location align with the results obtained in Hoffman et al. (2020), where similar

data was studied from a group-level perspective.

Both the number of current common partners and prior interactions significantly pro-

long the duration of physical interactions. The first common partner and prior interactions

reduce the duration intensity by multiplicative factors of 0.896 and 0.932, respectively.

Similarly, shared friendship status approximately halves the duration intensity of physi-

cal interactions. This finding suggests that strong relational ties stabilize over time. In

contrast, gender homophily does not have a statistically significant effect on the duration

intensity of physical interactions. The durations of digital interactions, measured via call

events, are driven by similar factors. However, in this case, all exogenous covariate effects
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(a) Physical (Co-location) (b) Digital (Call)

Figure 6: Estimates of the popularity parameters for physical (A) and digital interactions

(B).

are not significantly different from zero.

Popularity Estimates. The number of potential actor pairs to begin interacting is typ-

ically orders of magnitude larger than the pairs that may end them, while the number of

started and ended events is roughly the same. This imbalance is reflected in the overall

level of estimates shown in Figure 6, where the average of β̂0→1 is lower than the average

of β̂1→0 for both interaction modes. Consistent with Figure 5, the popularity parameters

in the incidence model are generally higher for co-location than for call interactions. The

contour lines in Figure 5 enable a comparison of individual actors’ popularity estimates

between the incidence and duration models. There is no clear correlation between the

two estimates for physical interactions. However, a pattern emerges for digital interactions

where low to average popularity coefficients in the incidence model often correspond to

average popularity effects in the duration model.

Overall, our results suggest that physical interactions are mainly driven by immediate

social context and co-presence (e.g., group settings). In contrast, digital interactions are
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primarily shaped by pre-existing social ties represented by Facebook friendships. The

popularity coefficients in the duration model are higher for physical interactions, suggesting

that digital interactions typically last longer than physical ones. An interpretation of the

baseline intensity is provided in Supplementary Material B.2.

6 Discussion

The proposed framework, accompanied by a scalable estimation algorithm, offers a robust

foundation for modeling the dynamics of durational events. Nonetheless, there are still

several exciting avenues for future extensions. Concerning the model specification, the

integration of multiple states beyond two states and higher-order events such as meetings

between multiple actors lasting a particular time (see, e.g., Espinosa-Rada et al., 2024)

would further broaden the model’s applicability. For large populations, it is reasonable

to assume that durational events between actors i and j are primarily influenced by their

respective local neighborhoods, rather than by the entire network. This assumption is

grounded in the concept of local dependence, introduced by Schweinberger and Handcock

(2015), which can be extended to the context of durational events. This mounts to a

combination of the algorithm introduced in this paper with model-based clustering for

durational events (Rastelli and Fop, 2020).

The modular structure of the proposed block-coordinate ascent algorithm from Section

3 allows for the independent application of any approximation or acceleration technique in

(8), (12), and (14) for the three updates separately. In particular, it will be worthwhile

to adapt sample-based approximations, such as case-control sampling (Lerner and Lomi,

2020) or Horvitz–Thompson-estimators (Raftery et al., 2012), to scale estimation to even

larger networks. For Step 3, acceleration techniques tailored to MM algorithms, discussed
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in Agarwal and Xu (2024), can be employed to improve convergence speed.

We provide the R package DEM, which implements our method and the suite of summary

statistics introduced in Section 2.2. To accommodate problem-specific requirements and

different data sources, users can define custom summary statistics and transformations

using C++ code. Our approach parallels the functionality of the ergm.userterms package,

which enables the inclusion of user-defined statistics for estimating Exponential Random

Graph Models (Hunter et al., 2013). Similarly, DEM is a flexible and extensible toolbox,

allowing researchers to tailor the statistical framework to meet their specific modeling

needs.
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A Further Information on the Simulation Study

A.1 Definition of Performance Measures

The AVE of a specific estimate θ̂ is the empirical mean of the estimates over the S datasets:

AVE(θ̂) =
1

S

S∑
s=1

θ̂(s),

where θ̂(s) = (β̂(s), β̂(s), γ̂(s)) is the estimate of θ in the sth simulation run. Given that all

datasets are generated under the same parameter values, this statistic provides a meaningful

assessment of estimation bias. To gauge both bias and variance, we report the RMSE of θ:

RMSE(θ̂) =

√√√√ 1

S

S∑
s=1

(
θ̂(s) − θ

)⊤ (
θ̂(s) − θ

)
.

To assess the uncertainty quantification, we examine coverage probabilities. The cov-

erage probability is the percentage of simulations in which the true parameter falls within

the confidence interval based on the normal approximation:

Z(s) = Λ(θ̂(s))
1/2(α̂(s) − α) ∼ N (0, 1). (A.1)

To validate this normal approximation, we compare the observed quantiles of Z(s) to those

we expect from standard normal random variables.

The Akaike Information Criterion (AIC, Akaike, 1973) for the DEM with converged

estimate

θ̂ = (θ̂0→1, θ̂1→0) under M events is given by the sum of the AIC of the incidence and

duration model:

AIC 0→1 := 2 logM − ℓ(θ̂0→1) and AIC 1→0 := 2 logM − ℓ(θ̂1→0).
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Result: Durational Event Matrix E ∈ RL×4, Ei,1, Ei,2 ∈ A, Ei,3 ∈ T,
Ei,4 ∈ {0, 1} for i ∈ A, where L is the maximal number of events.

Set tcurr = 0 and nev = 0.
while tcurr < T or nev < L do

1. Step: Compute Intensities

Set

λ0→1
i,j (tcurr | Htcurr ,θ

0→1) = exp
(
α0→1 s0→1

i,j (Htcurr) + β0→1
i + β0→1

j + o0→1
)

and

λ1→0
i,j (tcurr | Htcurr ,θ

1→0) = exp
(
α1→0 s1→0

i,j (Htcurr) + β1→0
i + β1→0

j + o1→0
)

for all (i, j) ∈ B.

2. Step: Select Intensities

Set λ (tcurr | Htcurr ,θ
0→1,θ1→0) = (λi,j (tcurr | Htcurr ,θ

0→1,θ1→0))

λi,j (tcurr | Htcurr ,θ
0→1,θ1→0) = (1− fi,j(tcurr))λ

0→1
i,j (tcurr | Htcurr ,θ

0→1)
+ fi,j(tcurr)λ

1→0
i,j (tcurr | Htcurr ,θ

1→0)

for all i, j) ∈ B.

3. Step: Sample Time Increment

Sample time between successive events:

T ⋆ ∼ Exp(||λ (tcurr | Htcurr ,θ
0→1,θ1→0)||0)

with observation t⋆.

4. Step: Sample Event

Sample which pair will experience the event:

(I⋆, J⋆) ∼ Multinomial

(
λ (tcurr | Htcurr ,θ

0→1,θ1→0)

||λ (tcurr | Htcurr ,θ
0→1,θ1→0)||0

, n = 1

)
with observation (i⋆, j⋆).

5. Step: Save Sampled Event

Set Enev,1 = i⋆, Enev,2 = j⋆, Enev,3 = t⋆ + tcurr, and Enev,4 = fi⋆,j⋆(tcurr).

6. Step: Update History and Counters

Update s0→1
i,j (Ht+tcurr) and s1→0

i,j (Ht+tcurr) for all (i, j) ∈ B.

Set fi⋆,j⋆(tcurr + t⋆) = 1− fi⋆,j⋆(tcurr), tcurr = t⋆ + tcurr, and nev = nev + 1.

end
Return E[, 0 : (nev − 1)]

Algorithm 1: Pseudo-Code to sample durational events in (0, T ].
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A.2 Simulation of Durational Events

We can reformulate our data representation in an equivalent form, as follows: a durational

event is characterized by two tuples in the form (i, j, t, r), where t is a time stamp, and r is

a binary indicator that determines if the tuple refers to the beginning (r = 1) or end (r = 0)

of an interaction. Then we can equivalently represent durational event d = (i, j, b, e) by

d̃1 = (i, j, b, 1) and d̃1 = (i, j, e, 0). This is the format used for the provided R package DEM

and in the following description of the pseudo-code to sample durational events from 2.

We present algorithm 1 for sampling durational events within an arbitrary time frame

(0, T ] under the assumption that f(t,γ0→1) and f(t,γ1→0) remain constant in that interval.

When these baseline step functions vary over time as step functions, we apply Algorithm

1 separately to each interval and concatenate the results. To accommodate for a flexible

specification of U0→1(t) and U1→0(t), we include for each pair (i, j) ∈ B an indicator pi,j(t)

of whether any type of event, start or end, is possible between the actors at time t ∈ T.

Our algorithm, therefore, assumes the specification of the following terms:

1. Number of actors N in the durational event network.

2. Sets of summary statistics for the incidence and duration model, s0→1
i,j (Ht) and

s1→0
i,j (Ht).

3. Parameter vectors α0→1 and α1→0 for the summary statistics.

4. Parameter vectors β0→1 ∈ RN and α1→0 for the popularity effects.

5. Parameters o0→1 and o1→0 defining the constant value of f(0,γ0→1) and f(0,γ1→0),

respectively.

Together, these parameters are defining θ0→1 and θ1→0. Denoting all durational events

that start before t by D(t), we can define the indicator function fi,j(t) whether actor pair

4



(i, j) ∈ B are at time t ∈ T are in an ongoing duration

fi,j(t) := I(∃ d = (i, j, b, e) ∈ D(t) such that t ∈ [b, e]).

B Further Information on the Application

B.1 Initial Censoring

For our applications, we assume that the observations start with the first event. Chronolog-

ically ordering the observed events by d1, . . . , dM , we thus set d1 = (i1, j1, 0, e1). We have

no information on when exactly the observational process starts and, therefore, condition

on the start of the first event without modeling it. This practice disregards the initial

censoring of observations. However, the effect is negligible since 155.316 and 4,152 for the

application to the proximity and call data, respectively.

B.2 Interpretation of Baseline Step Function

The estimates of the baseline step functions f(t, γ̂ 0→1) and f(t, γ̂ 1→0) for the co-location

and call data are presented in the first rows of Figures 7 and 8, respectively. As described

in Section 5.1, each step in these step functions corresponds to a one-hour interval. A clear

daily cyclical pattern is evident in Figures 7 and 8. To separate long-term trends from

cyclical variations, we apply the local smoothing technique developed by Cleveland (1979)

to each baseline step function independently. The resulting trend estimates are represented

by black smooth lines in all plots.

From the first row of Figures 7 and 8, we observe that controlling for all other effects,

the baseline step function for the initiation of a durational event shows a consistent decline

over the observed period. In contrast, the baseline step function for terminating a dura-
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(a) Incidence (b) Duration

Figure 7: Estimates of baseline intensity of the co-location model.

tional event exhibits a slight increase or remains stable. The second row of these figures

displays the residuals from the local regression, which capture cyclical effects. Notably, the

step function residuals for the incidence models reveal strong daily patterns, where high

intensities align with daylight hours and low intensities correspond to nighttime. Addition-

ally, in the first plot of the second row in Figure 7, an apparent disruption in this pattern

around day 15 may be associated with weekend activities.

B.3 Sensitivity Analysis of Change-Point Specification

As detailed in the main text, the user must specify the set of change points 0 = c0 <

c1 < · · · < cQ, at which the baseline step function f(t,γ) =
∑Q

q=1 γq I(cq−1 ≤ t < cq) is

allowed to change. In the application presented in Section 5, we construct an hourly grid

spanning the entire 27-day observation period. As a sensitivity check, we re-estimate the

6



(a) Incidence (b) Duration

Figure 8: Estimates of baseline step function of the call model.

same models reported in Table 2, but under a coarser temporal resolution, allowing for a

change point every two hours instead of one. The corresponding estimates of α̂0→1 and

α̂1→0 under this specification are presented in Tables 3 and 4, while the estimated baseline

step function f(t, γ̂ 0→1) and f(t, γ̂ 1→0) are visualized in Figure 9. All those results confirm

the robustness of our results concerning the choice of grid resolution for change points. The

estimated effects remain qualitatively the same, demonstrating that the model’s conclusions

are not sensitive to the specific granularity of the baseline step function.

B.4 REM Application to Texting

For the application to the texting data between the students, we apply similar inclusion

criteria as in the applications shown in the main analysis. However, we apply the condition

that all included actors need to have at least one relational event, i.e., texting event.
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Table 3: Parameter estimates (α̂) and standard errors (SE) of the Durational Event Model

applied to the co-location data assuming a baseline step function that can change every

hour (left column) and every second hour(right column).

Every Hour Every two hours

Summary Statistic α̂ SE α̂ SE

Incidence (α̂0→1)

Current Common Partner 2.867 .006 2.834 .006

General Common Partner .726 .007 .726 .007

Number Interaction 1.129 .005 1.127 .005

Friendship Match .383 .010 .383 .010

Both Female −.021 .010 −.020 .010

Duration (α̂1→0)

Current Interaction −.102 .002 −.101 .002

Number Interaction −.158 .005 −.165 .005

Current Common Partner −.312 .006 −.319 .006

General Common Partner .080 .009 .086 .009

Friendship Match −.535 .010 −.536 .010

Both Female −.018 .010 −.017 .010

Thereby, we obtain 38,286 relational events between N = 426 students. Each relational

event d = (i, j, t) is a tuple representing a text message between students i and j at time t.

In accordance with (2) , the intensity of an event at time t ∈ T for pair (i, j) ∈ B is:

λi,j (t | Ht,θ) = exp
(
α⊤ si,j(Ht) + βi + βj + f(t,γ)

)
. (B.1)
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Table 4: Parameter estimates (α̂) and standard errors (SE) of the Durational Event Model

applied to the call data assuming a baseline step function that can change every hour (left

column) and every second hour(right column).

Every Hour Every two hours

Summary Statistic α̂ SE α̂ SE

Incidence (α̂0→1)

General Common Partner 1.631 .039 1.631 .039

Number Interaction .224 .125 .227 .121

Friendship Match 5.687 .116 5.681 .116

Both Female .203 .085 .201 .084

Duration (α̂1→0)

Current Interaction −.053 .024 −.060 .023

Number Interaction −.274 .073 −.162 .065

General Common Partner .518 .186 .579 .170

Friendship Match −.337 .464 −.670 .390

Both Female −.227 .320 −.211 .287

The summary statistics are

si,j(Ht) =



log
(∑

h/∈{i,j} vi,h(t) vh,j(t) + 1
)

log(Ni,j(t) + 1)

I(xi,j,1 = 1)

I(xi,2 = xj,2)


,

where vi,j(t) indicates whether actors i and j have ever interacted before time t. The
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Figure 9: Comparison of the estimated baseline step function under the assumption that it

can change every hour and every two hours for durational events representing co-location

(first row) and call events (second row) for the incidence (first column) and duration model

(second column).

covariates are defined in Section 5.1.

Summary Statistics The estimates of α are given in Table 5 and can be interpret as

detailed in Section 2.2. The first common partner and joint interaction have a multiplicative

effect of 1.249 and 4.678 on the intensity between students i and j. These two coefficients

demonstrate that sharing common text partner incentives triadic closure and that students

repeatedly exchange texts between them. Contrary to these findings, being friends on

Facebook has a small but significant negative effect on the intensity. Finally, we observe a

10



Table 5: Parameter estimates (α̂) and standard errors (SE) of the Relational Event Model

applied to the Texting data.

Summary Statistic α̂ SE 2α̂

Common Partner .321 .052 1.249

Number Interaction 2.226 .011 4.678

Friendship Match −.419 .133

Both Female .229 .039

positive gender-specific homophily effect, whereby two female students are more likely to

exchange text messages than two males and mixed gender pairs.

Popularity Estimates. We visualize the observed dyadic text message exchanges in

Figure 10 as a weighted network, where the weight of each edge represents the logarithm

of the number of SMS events between the corresponding pair of students. We used the

Fruchterman-Reingold algorithm (Fruchterman and Reingold, 1991) for this visualization.

The size of each node is scaled relative to the corresponding popularity estimate β̂i. Figure

10 reveals that students with higher popularity estimates do not necessarily occupy central

positions in the network. One possible explanation is that the interaction patterns between

actors in central regions of the network are well captured by the summary statistics without

the need for additional popularity effects.

Baseline Step Function. Finally, we visualize the estimated baseline step function

f(t, γ̂) in Figure 11. Consistent with the patterns observed in Figures 7 and 8, the function

exhibits distinct daily cycles alongside a gradual downward trend over time.
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Figure 10: Observed texting events over the studied 28 days. The number of text messages

between particular students is represented by the thickness of the edge and the size of the

nodes represents the relative popularity estimate.

Figure 11: Estimated baseline step function for the REM applied to the Texting Data.
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