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Abstract: Over the course of the COVID-19 pandemic, Generalized AdditiveModels (GAMs) have been
successfully employed on numerous occasions to obtain vital data-driven insights. In this article we fur-
ther substantiate the success story of GAMs, demonstrating their flexibility by focusing on three relevant
pandemic-related issues. First, we examine the interdepencyamong infections in different age groups, con-
centrating on school children. In this context, we derive the setting under which parameter estimates are
independent of the (unknown) case-detection ratio, which plays an important role in COVID-19 surveil-
lance data. Second, we model the incidence of hospitalizations, for which data is only available with a
temporal delay. We illustrate how correcting for this reporting delay through a nowcasting procedure can
be naturally incorporated into the GAM framework as an offset term. Third, we propose a multinomial
model for the weekly occupancy of intensive care units (ICU), where we distinguish between the number
of COVID-19 patients, other patients and vacant beds. With these three examples, we aim to showcase
the practical and ‘off-the-shelf’ applicability of GAMs to gain new insights from real-world data.
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1 Introduction

From the early stages of the COVID-19 crisis, it became clear that looking at the raw data would
only provide an incomplete picture of the situation, and that the application of principled statistical
knowledge would be necessary to understand the manifold facets of the disease and its implications
(Panovska-Griffiths, 2020; Pearce et al., 2020). Statistical modelling has played an important role in
providing decision-makers with robust, data-driven insights in this context. In this article, we specif-
ically highlight the versatility and practicality of Generalized Additive Models (GAMs). GAMs
constitute a well-known model class, dating back to Hastie and Tibshirani (1987), who extended
classical Generalized Linear Models (Nelder and Wedderburn, 1972) to include non-parametric
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smooth components. This framework allows the practitioner to model arbitrary target variables
that follow a distribution from the exponential family to depend on covariates in a flexible man-
ner. Due to the duality between spline smoothing and normal random effects, mixed models with
Gaussian random effects are also encompassed in this model class (Kimeldorf and Wahba, 1970).
One can justifiably claim that the model class is one of the main work-horses in statistical modelling
(see Wood, 2017 and Wood, 2020 for a comprehensive overview of the most recent advances) and
numerous authors have already used this model class for COVID-19-related data analyses. As re-
search on topics related to COVID-19 is still developing rapidly, a complete survey of applications
is impossible; hence, we here only highlight selected applications, sorted according to the topic they
investigate. Many applications analyse the possibly non-linear and delayed effect of meteorological
factors (including, e.g., temperature, humidity, and rainfall) on COVID-19 cases and deaths (see
Goswami et al., 2020; Prata et al., 2020; Ward et al., 2020; Xie and Zhu, 2020). While the results
for cold temperatures are consistent across publications in that the risk of dying of or being infected
with COVID-19 increases, the findings for high temperatures diverge between studies fromno effects
(Xie and Zhu, 2020) to U-shaped effects (Ma et al., 2020). Logistic regression with a smooth tempo-
ral effect, on the other hand, was used to identify adequate risk factors for severe COVID-19 cases
in a matched case-control study in Scotland (McKeigue et al., 2020). In the field of demographic
research, Basellini and Camarda (2021) investigate regional differences in mortality during the first
infection wave in Italy through a Poisson GAM with Gaussian random effects that account for re-
gional heterogeneities. With fine-grained district-level data, Fritz and Kauermann (2022) present an
analysis confirming that mobility and social connectivity affect the spread of COVID-19 in Ger-
many. Wood (2021) shows that UK data strongly suggest that the decline in infections began before
the first full lockdown, implying that the measures preceding the lockdown may have been suffi-
cient to bring the epidemic under control. This list of applications illustrates how GAMs have been
successfully employed to obtain data-driven insights into the societal and healthcare-related impli-
cations of the crisis.

We contribute to this success story by focusing on three applications to demonstrate the ‘off-
the-shelf ’ usability of GAMs. First, we investigate how infections of children influence the infection
dynamics in other age groups. In this context, we detail in which setting the unknown case-detection
ratio does not affect the (multiplicative) parameter estimates of interest. Second, we show how cor-
recting for a reporting delay through a nowcasting procedure akin to that proposed by Lawless
(1994) can be naturally incorporated in a GAM as an offset term. Here, the application case fo-
cuses on the reporting delay of hospitalizations. Third, we propose a prediction model for the occu-
pancy of Intensive Care Units (ICU) in hospitals with COVID-19 and non-COVID-19 patients. We
thereby provide authorities with interpretable, reliable and robust tools to better manage healthcare
resources.

The remainder of the article is organized as follows: Section 2 shortly describes the available data
on infections, hospitalizations and ICU capacities that we use in the subsequent analyses, which are
presented in Sections 3, 4 and 5, respectively. We conclude the article in Section 6.

2 Data

For our analyses, we use data from official sources, which we describe below. Note that our applica-
tions are limited toGermany although all of our analyses could be extended to other countries given
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data availability. We pursue all subsequent analyses on the spatial level of German federal districts,
which we henceforth refer to as ‘districts’. This spatial unit corresponds to NUTS 3, the third and
most fine-grained category of the NUTS European standard (Nomenclature of Territorial Units for
Statistics). We refer to Annex A for a graphical depiction of the spatial resolution of the data.

Infections and hospitalizations For investigating infection dynamics across different age groups,
we use data provided by the Bavarian Health and Food Safety Authority (Landesamt für Gesund-
heit und Lebensmittelsicherheit, LGL). This statewide register includes, the registration date for all
COVID-19 infections reported in Bavaria, as well as information on the patient’s age and gender.
Infection data for Germany is also published daily by the RKI (Robert Koch Institute, 2021), the
German federal government agency and scientific institute responsible for health reporting and dis-
ease control. Due to privacy protection, the RKI groups patients in broad age categories, which
inhibits the analysis of the group of school children. As this is necessary for our first application in
Section 3.3, we restrict the analysis to Bavarian data and use LGL data where not stated otherwise.

In addition, the LGL dataset includes information on the hospitalization status of each patient,
which is not included in the RKI data, that is, whether or not a case has been hospitalized and the
date of hospitalization, if this had occurred. We determine the date on which a hospitalized case is
reported to the health authorities by matching the cases across the downloads available on different
dates. This is necessary in order to derive the reporting delay for each hospitalization, which is of
interest in Section 4.

Intensive care unit occupancy Data on the daily occupancy of ICU beds in Germany, on the other
hand, is made publicly available by the German Interdisciplinary Association for ICU Medicine
and Emergency Medicine (Deutsche interdisziplinäre Vereinigung für Intensiv und Notfallmedizin,
DIVI, 2021). Using this dataset we obtain information on the number of high and low care ICU-
beds occupied by patients infected with COVID-19 and patients not infected with COVID-19. As
a third category, there are also the vacant beds. In contrast to the infection data, no information is
available on the age or gender composition of the occupied beds.

Population data In conjunction with the data sources described above, we use demographic data
on the German population at the administrative district level, provided by the German Federal Sta-
tistical Office (DESTATIS). Since the raw numbers on infections and hospitalizations are strongly
influenced by the number of people living in a particular district, we use this population data to
transform the absolute infection and hospitalizations to incidence rates. In general, we use the term
incidence rates to refer to infection incidence rates, and hospitalization incidence rates when writing
about hospitalizations. While we effectively model the incidence rate in Section 3 and the hospital-
ization incidence rate in Section 4, we incorporate the incidence rate per 100.000 inhabitants as a
regressor in Section 5.

3 Analysing associations between infections from different age groups

A central focus during the COVID-19 pandemic is to identify the main transmission patterns of the
infection dynamics and their driving factors. In this context, the role of children in schools for the
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general incidence poses an important question with many socio-economic and psychological impli-
cations to it (see Andrew et al., 2020; Luijten et al., 2021). Since findings from previous influenza
epidemics have tended to identify the younger population, children aged between 5 and 17, as the
key ‘drivers’ of the disease (Worby et al., 2015), the German government ordered school closures
throughout the course of the pandemic between spring 2020 and 2021 to contain the pandemic.
However, whether these measures were necessary or effective in the case of COVID-19 is still subject
to current research (e.g., Perra, 2021). In particular, several studies investigated the global effect of
infections among school children, but a general conclusion could not be drawn (see Flasche and
Edmunds, 2021; Hippich et al., 2021; Hoch et al., 2021; Im Kampe et al., 2020). In general, we
would like to remark that in many studies the main goal was to arrive at conclusions about the sus-
ceptibility, severity, and transmissibility of COVID-19 for children (Gaythorpe et al., 2021). On the
other hand, we are here primarily interested in quantifying how the incidences of children are asso-
ciated with the incidences in other age groups. Therefore, we want to assess whether children are key
‘drivers’ of the pandemic. Our analysis is based on aggregated data on the macro level, as opposed
to the data on the individual level, which is needed to answer hypotheses, for example, about the
susceptibility of a particular child.

3.1 Autoregressive model for incidences
To tackle this problem from a statistical point of view, we propose to analyse the infection data us-
ing a time-series approach (Fokianos and Kedem, 2004). Let therefore Yw,r,a denote the number of
infections in week w in district r and age group a. For simplicity, we assume independent develop-
ments among the districts and let Yw,r,a depend on the incidences in all age groups from the previous
weekw − 1. Put differently, we includeYw−1,r = (Yw−1,r,1, . . . ,Yw−1,r,A) as covariates, where 1, . . . , A
indexes all A considered age groups. Among the components of Yw,r we then postulate indepen-
dence conditional on Yw−1,r . For illustration, Figure 1 depicts the assumed dependence structure.
As for the distributional assumption, we make use of a negative binomial distribution with mean
structure

E(Yw,r,a|Yw−1,r ) = exp{ηw,r,a + or,a} (3.1)

where or,a serves as offset and η gives the linear predictor. To be specific, we set or,a = log(xpop,r,a),
where xpop,r,a is the time-constant population size in district r and age group a. Note that we implic-
itly model the incidences by incorporating this offset term, since the incidences Iw,r,a relate to the
counts through Yw,r,a = Iw,r,axpop,r,a . The linear predictor is now defined as

ηw,r,a = θw +
A∑

k=1

log(Yw−1,r,k + δ)θa,k, (3.2)

where θw serves as week-specific intercept, θa,k is the coefficient weighting the influence of lagged
infections of age group k on the infections in age group a and δ is a small constant, which is included
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Figure 1 Assumed temporal dependence structure visualized as a directed acyclic graph (DAG)

for numerical stability to cope with zero infections, . We set δ to 1 in the calculation but omit the
term subsequently for a less cluttered notation.

3.2 Robustness under time-varying case-detection ratio
Model (3.1) has the important methodological advantage of being able to cope with an unknown
case-detection ratio, which is inevitable if there are under-reported cases. This is a key problem in
COVID-19 surveillance as not all infections are reported (Li et al., 2020); hence the case-detection
ratio (CDR) is typically less than one. Various approaches havebeen pursued to quantify the number
of unreported cases, for example, by estimating the proportion of current infections which are not
detected by PCR tests (Schneble et al., 2021a).For demonstration, assume that Ỹw,r,a are the detected
infections in week w in district r for age group a, while Yw,r,a are the true infections. Apparently
Ỹw,r,a ≤ Yw,r,a holds if we assume under-reporting. We assume multiplicative under-reporting and
denote with 0 < Rw,r,a ≤ 1 the multiplicative CDR in district r in age group a and set with Rw,r =
(Rw,r,1, ..., Rw,r,A) the joint CDRs for all A available age groups. In this setting, we observe

Ỹw,r,a = Rw,r,aYw,r,a (3.3)

infections in the corresponding week w, district r , and age group a from the Yw,r,a true infections.
Apparently, integrity for Yw,r,a is not guaranteed with (3.3), which we could, however, impose by
rounding.We further assume that Rw,r,a andYw,r,a are independent of each other, conditional on the
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previous week’s data.We further assume that Rw,r,a are independent random draws for the different
districts, thus the case-detection ratio may vary between the districts. Assuming further an i.i.d.
setting such that E(Rw,r,a) = πw,a yields for model (3.1) under (3.3):

E
(
Ỹw,r,a|Ỹw−1,r

) = ERw,Rw−1

(
EYw

(
Rw,r,aYw,r,a|Ỹw−1,r , Rw,r,a, Rw−1,r

))
= ERw,Rw−1

(
Rw,r,a EYw

(Yw,r,a|Yw−1,r )
)

= πw,a ERw−1

(
exp{ηw,r,a}

)
exp{or,a} (3.4)

where for clarity we include the random variable as an index in the notation of the expectation. Note
that

ERw−1

(
exp{ηw−1,r,a}

)
= ERw−1

(
exp

{
A∑

k=1

log(R−1
w−1,r,kỸw−1,r,k)θa,k + θw

})

= exp
{
η̃w,r,a

}
ERw−1

(
exp

{
A∑

k=1

log(R−1
w−1,r,k)θa,k + θw

})

= exp
{
η̃w,r,a + θ̃w

}
, (3.5)

where

η̃w,r,a =
A∑

k=1

log(Ỹw−1,r,k)θa,k

and

θ̃w = θw + log

(
ERw−1

(
exp

{
A∑

k=1

log(R−1
w−1,r,k)θa,k

}))
.

Hence, combining (3.4) and (3.5) shows that if we fit the model (3.2) to the observed data, which are
affected by unreported cases, we obtain the same autoregressive coefficients θa,k for k = 1, ..., A as
for the model trained with the true (unknown) infection numbers. All effects related to undetected
cases accumulate in the intercept, which is of no particular interest in this context. In summary, if we
assume that the CDR does not depend on the number of infections but might be different between
age groups and different weeks, we obtain valid estimates for the autoregressive coefficients even if
(multiplicative) under-reporting is present. While the independence assumptions made are generally
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questionable, it is reasonable to assume these for a short time interval. Note that a similar argument
holds for an additive CDR under epidemiological models proposed by Meyer and Held (2017) and
Held et al. (2005).

3.3 Infection dynamics for school children
We can now investigate the infection dynamics between different age groups to answer the question
brought up at the beginning of Section 3.1. Since the age groups provided by the RKI are too coarse
for this purpose, we rely on the data provided by the LGL for Bavaria. For this dataset, we have
the age for each recorded case, which, in turn, enables us to define customized age groups. To be
specific, we define the age groups of the younger population in line with the proposal of the WHO
and UNICEF (2020): 0–4, 5–11, 12–20, 21–39, 40–65, +65. For this analysis, we estimate model
(3.1) with data on infections which were registered between 1 and 27 March 2021. The data was
downloaded in May 2021; hence reporting delays should have no relevant impact on the analysis.
We employ model (3.1) separately for all five analysed age groups to assess how all age groups affect
each other. The fitted autoregressive coefficients θa,k are visualized in Figure 2 including their 95%
confidence intervals. The partition of the x-axis refers to index a, while index k, the influence of the
other age groups, is indicated by the different colours and drawn from left (5–11) to right (65+).
For instance, the label ‘Model 5–11’ shows all interpretable effects where the target variable is the
incidence of people aged between 5 and 11. Note that the only interpretative results of our model
concern the effects between the age groups. Thus we omit the weekly intercept estimates from
(3.2) in Figure 2, which lose all interpretative power in the context of under-reporting as argued in
Section 3.2.

In general, we observe that the autoregressive effects for the own age group, that is, a = k (drawn
as triangles in Figure 2) are among the essential predictors in all age-group-specific models. Re-
garding the effects between age groups, the association of 5–11-year-olds (yellow, most left coeffi-
cient) with all other age groups is relatively small and, in most cases, not significant. In contrast,
the age groups of working people aged between 21–39 (blue, middle) and 40–65 years (green, sec-
ond right) have the highest relative effect on the incidences for all age groups (except for the au-
toregressive coefficients). For instance, we see that the effects of the children and adolescents (5–11
and 12–20 years) on the incidences of 21–39 and 40–65-year-olds, albeit sometimes being signif-
icantly different from 0, affect the prediction far less than the incidences of the working popula-
tion. In this respect, the results confirm previous analyses concluding that increasing incidences
in children and adolescents are weakly associated with the incidences of other age groups. Vice
versa, we find empirical evidence that people between 21 and 65 are the main drivers of infection
dynamics.

The results do not come without limitations. First of all, note that the data is observational, not
experimental. Hence, we can only draw associative and not causal conclusions from the datawithout
additional assumptions. Moreover, we rely on the given assumptions on the under-reporting. Still,
rerunning the analyses for otherweeks, shown in the SupplementaryMaterial, yielded similar results,
supporting the robustness of our approach and findings. Further, by the beginning of March 2021
around 2.2 million people predominantly from the 65+ age group were already fully vaccinated
against COVID-19, which may have an effect on the estimates.
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Figure 2 Association of previous week’s incidences in different age groups (colour-coded) with the
current-week incidences for calendar weeks 9–12 in 2021 stratified by age group (5 age groups correspond to 5
distinct Models)

4 Modelling hospitalizations accounting for reporting delay

A relevant number of COVID-19 infections lead to hospitalizations, and the incidence of patients
hospitalized in relation to COVID-19 is of paramount importance to policymakers for several
reasons. First, hospitalized cases are most likely to result in very severe illnesses and deaths, the
minimization of which is generally the primary aim of healthcare management efforts. In addition,
knowing the number of hospitalized patients is crucial to adequately assess the current state of the
healthcare system. Finally, while the number of detected infections depends considerably on testing
strategy and capacity, the number of hospitalizations provides a more precise picture of the current
situation. For these reasons, hospitalization incidence has been deemed increasingly more relevant
by scientists and decisionmakers over the course of the pandemic, and finally became the central in-
dicator for pandemic management in Germany from September 2021, complementing the incidence
of reported infections.

The central problem in calculating the hospitalization incidence with current data is that hos-
pitalizations are often reported with a delay. Such late registrations occur along reporting chains
(from local authorities to central registers), but also due to data validity checking at different levels.
Visual proof of the degree of this phenomenon is given in Figure 3, which depicts the empirical dis-
tribution function of the time (in days) between the date on which a patient is admitted into a Bavar-
ian hospital and the date on which the hospitalization is included in the central Bavarian register.
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Figure 3 Cumulative distribution function of the time delay (in days) between hospitalization and its
reporting, calculated with data from 1 January to 18 November of 2021, shown separately for the age groups
0–59 and 60+. The curves for both age groups are truncated at a delay of 40 days, when approximately 94.6%
of all hospitalizations have been reported

In 2021, only 12.3% of hospitalized cases in Bavaria are known the day after admission, and about
two thirds of them (67.2%)are reportedwithin seven days.Moreover, the duration tends to be slightly
shorter for patients younger than 60 than older patients.

Modelling and interpreting current data with only partially observed hospitalization incidences
can lead to biased estimates and misleading conclusions, especially if one is interested in the
temporal dynamics. To correct for such reporting delays, we utilize ‘nowcasting’ techniques, loosely
defined as ‘[t]he problem of predicting the present, the very near future, and the very recent past’ (p.
193, Bańbura et al., 2012). Related methods have been extensively treated in the statistical literature
(see, e.g., Höhle and AnDer Heiden, 2014; Lawless, 1994) and successfully applied to infections and
fatalities data during the current health crisis (De Nicola et al., 2022; Günther et al., 2020; Schneble
et al., 2021b). In contrast to these approaches, we here focus on modelling the hospitalization in-
cidences, correcting for delayed reporting through a nowcasting procedure based on the work of
Schneble et al. (2021b).

We denote by Rt,r,g the hospitalization incidence on day t for district r and age/gender group g,
while the absolute count of hospitalizations in the same cohort is defined by Ht,r,g. Naturally, those
two quantities related to one another through

Rt,r,g = Ht,r,g

xpop,r,g
. (4.1)

To account for the delayed registration of hospitalizations in Ht,r,g when modelling Rt,r,g , we pursue
a two-step approach, consisting of a nowcasting and amodelling step. In the former step, we nowcast
the hospitalizations that are expected but not yet reported, while in the latter step we model Rt,r,g

Statistical Modelling xxxx; xx(x): 1–24



10 Fritz et al.

Figure 4 Illustration of the data setting for dmax = 6. Nt,d indicates hospitalizations reported with a specific
delay d, while Ct,d denotes all those reported with delay up to d. Ht denotes the final number of hospitalized
cases regardless of the delay with which they were reported, that is with a delay up to the maximum possible,
dmax

as a function of several covariates, which will allow us to gain insights into the geographic and
sociodemographic drivers of the pandemic. We describe the two steps below.

4.1 Nowcasting model
In this first step, we estimate the final number of hospitalized patients on day t, denoted by Ht,
factoring in the expected reporting delay. Note that, while we do have data available at the district
level, at this stage we aggregate hospitalizations across Bavaria due to the sparsity of the data. If
we are performing the analysis on day T, we can compute the cumulative hospitalization counts
Ct,d = ∑d

l=1 Nt,l , where Nt,d is the number of hospitalizations on day t reported with delay d, for
every t ∈ {1, ...,T} and d ∈ {1, ...,T − t}. Assuming a maximal reporting delay of dmax days, we
denote the complete distribution of delayed registrations of cases with hospitalization on day t by
Nt = (Nt,1, ..., Nt,dmax ) ∈ N

dmax with
∑dmax

d=1 Nt,d = Ht. We graphically demonstrate how Nt,d ,Ct,d , and
Ht relate to one another in Figure 4. By design, Nt follows a multinomial distribution:

Nt ∼ Multinomial(Ht, πt), (4.2)

where πt = (P(Dt = 1; t), ...,P(Dt = dmax; t)) are the proportions of hospitalizations on day t with a
specific delay, and Dt is a random variable describing the reporting delay of a single hospitalization
which occurred at time t. For this application, we do not directly model those probabilities but
instead opt for a variant of the sequential multinomial model proposed by Tutz (1991). In particular,
we define the conditional probabilities through

pt(d|xt) := P(Dt = d|Dt ≤ d; xt), (4.3)
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conditional on covariates xt. It follows that the cumulative distribution function of D can be written
as:

Ft(d|xt) = P(Dt ≤ d; xt,a)

= P(Dt ≤ d|Dt ≤ d + 1; xt)P(Dt ≤ d + 1; xt)

=
dmax−1∏
k=d

P(Dt ≤ k|Dt ≤ k+ 1; xt)

=
dmax−1∏
k=d

(1 − P(Dt = k+ 1|Dt ≤ k+ 1; xt))

=
dmax∏

k=d+1

(1 − P(Dt = k|Dt ≤ k; xt))

=
dmax∏

k=d+1

(1 − pt(k|xt)). (4.4)

Combining (4.2) and (4.3) allows us to model the delay distribution with incomplete data. We
do this separately for two age groups, which we denote by an additional index a. This leads to the
model

Nt,a,d ∼ Binomial (Ct,d , pt,a(d|xt,a,d)) (4.5)

with the structural assumption

log
(

pt,a(d|xt,a,d)
1 − pt,a(d|xt,a,d)

)
= θ0 + s1(t) + s2(d) + s3(d) · I(60+) + x�

t,dθ,

where θ0 is the intercept, s1(t) = θ1t +∑L
l=1 αl · (t − 28l)+ is the piece-wise linear time effect, s2(d)

the smooth duration effect, s3(d) a varying smooth duration effect for the age group 60+, and xt,d
are additional covariates depending on t and the delay d, that is, a weekday effect for t and t + d.

From Figure 4, one can also derive that the proportion of Ht,a included in Ct,a,d can be compre-
hended as the probability that a hospitalization on day t in age group a has a reporting delay smaller
than or equal to d, that is, Ft,a(d|xt,a). Assuming independence of Ht,a from Dt,a then yields:

E(Ht,a)Ft,a(d|xt,a) = E(Ct,a,d ), (4.6)

meaning that the expected number of patients from age group a hospitalized on day t can finally be
obtained as

E(Ht,a) = E(Ct,a,d )
Ft,a(d|xt,a) . (4.7)
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This equation holds for any delay d ≤ T − t which is already observed at the date of analysis. Thus,
it is possible to express the expected numbers of hospitalized patients through the ratio between the
number of already reported patients up to delay d and the cumulative distribution function F .

In summary, we can fit the logistic regression model given by (4.5) with the available data on
hospitalizations. Based on this model, we exploit (4.7) to obtain an estimate for the expected number
of hospitalizations from age group a on day t. Uncertainty intervals for the estimated nowcasts
can then be obtained, for example, through a parametric bootstrapping approach relying on the
asymptotic multivariate normal distribution of the estimated model coefficients.

4.2 Hospitalization model
In the second step, we propose a model for the expected value of Rt,r,g , the hospitalization incidence
on day t in district r and age/gender group g, conditional on covariates xt,r,g. To be specific we set

E(Rt,r,g |xt,r,g) = exp{θ0 + θagexage,g + θgenderxgender,g + θgender:agexage,gxgender,g+
θweekdayxweekday,t + s1(t) + s2(xLon,r , xLat,r ) + ur }

= exp{ηt,r,g}, (4.8)

where the linear predictor ηt,r,g includes, in addition to the intercept θ0, effects for the age/gender
groups through the main and interaction effects θage, θgender and θgender:age. Additionally, we include
dummy effects θweekday for each day of the week to account for potentially different hospitalization
rates over the course of the week. Furthermore, the hospitalization incidences are allowed to vary
over time through the smooth term s1(t). Finally to account for spatial heterogeneity, we add a
smooth spatial effect of each district’s average longitude and latitude s2(r ) and a Gaussian random
effect to capture random deviations from this smooth effect, that is, ur ∼ N(0, τ 2) with τ 2 ∈ R

+.
Note that, on any given day t > T − dmax, we do not yet observe the final hospitalization counts

Ht,r,g , but only the ones already reported at this time, that is Ct,r,g,T−t, indicating the cumulative
observations on day t in district r reported with a delay of up to d = T − t days for age/gender
group g. The age/gender group indexed by g extends the coarse (binary) age categorization a used
in Section 4.1, which only differentiates between cases younger and older than 60 years. Exploiting
(4.7) and the definition (4.1) of the incidence leads to the final model

E(Rt,r,g|xt,r,g) = E(Ct,r,g,T−t|xt,r,g)
xpop,r,g Ft,g(T − t|xt,g) , (4.9)

where we set Ct,r,g,T−t = Ht,r,g if T − t ≥ dmax. Rearranging (4.9) shows that modelling the count
variable Ct,r,g,T−d with the offset term log(xpop,r,g Ft,g(T − t|xt,g)) is equivalent to modelling Rt,r,g as
in (4.8), since

E(Ct,r,g,T−t|xt,r,g) = exp
{
ηt,r,g + log(xpop,r,g Ft,g(T − t|xt,g))

} = μt,r,g (4.10)

holds. In practice we thereby replace the unknownquantities in the offsetwith their estimates derived
in the previous section. In other words, the delayed reporting is accommodated through an offset in
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the model using only the reported dataCt,r,g,T−t. We can then complete the model by making use of
a negative binomial model to account for possible overdispersion:

Ct,r,g,T−t|xt,r,g ∼ NB(μt,r,g, σ
2),

with μt,r,g parametrized as in (4.10) and (4.8), and the dispersion parameter σ 2 is estimated from
the data.

As an additional note, we point out that accounting for late registrations works analogously
for any model within the endemic–epidemic framework originating in Held et al. (2005). The only
difference to the approach presented here is that the exact functional formof the expected valuemust
be adequately accounted for. For instance, if μt,r,g consists of the sum of non-negative endemic and
epidemic terms, one should incorporate the offset in both terms.

4.3 Application to the fourth COVID-19 wave in Bavaria
For the application, we focus on the first two months of the fourth wave of the pandemic in Bavaria,
which began towards the end of September 2021. In particular, we consider hospitalizations between
24 September and 18 November, using data reported as of 18 November 2021. We set dmax = 40
days to be the maximum possible duration between hospitalization and its reporting in the central
Bavarian register. We derive this choice from the empirical delay distribution in Figure 3, proving
that since the beginning of 2021, around 94% of the hospitalizations have been reported within 40
days of their occurrence. We have no information on the date of hospital admission for about 9.6%
of all hospitalizations related to COVID infections that were reported between 24 September and
19 November. For those cases, we replace the date of hospitalization with the respective COVID-19
infection date as reported by the local health authorities. For brevity, we only present a comparison
of the nowcasted and rawhospitalization counts for the nowcastingmodel and the age/gender group-
specific and spatial effects of the hospitalization model. We refer to the Supplementary Material for
additional results.

Figure 5 maps the raw and corrected rolling weekly sums of hospitalization counts accompanied
by the 95% confidence intervals for the whole population as well as separately for the two age groups
under consideration. While reported numbers indicate a relatively stable or even slightly decreasing
development over the last two weeks of observed data, the nowcast reveals a continuous upward
trend since the beginning of October. Comparing both age-stratified populations, the increase for
those over 60 years (the more vulnerable) is steeper. The figure also plots the realized hospitalization
counts observed after 40 days have passed since 19 November 2021. The comparison of our nowcast
with those realized figures observed a posteriori shows that our model tends to slightly overestimate
the reported cases for the younger population. This might be due to the beginning of the Delta
curve with rapidly increasing hospitalizations since October 2021 after a phase with rather low
hospitalization numbers. Nevertheless, our nowcast estimates show a clear improvement in terms
of reflecting the true dynamics of hospitalized cases compared to the curve of the reported values.
These results emphasize the need to adjust reported hospitalization counts, as they tend to systemat-
ically underestimate the number of recently occurred hospitalizations, which can lead to inaccurate
conclusions about the current state of the pandemic.
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Figure 5 Comparison of nowcasted (red) and reported (blue) rolling weekly sums of hospitalization counts
between 24 September and 18 November 2021, based on data reported as of 19 November 2021. Note: 95%
confidence intervals of the nowcast estimates are indicated by the shaded areas. The dashed black lines show
the realized weekly sums of hospitalization after 40 days, that is, the maximum delay assumed in our
nowcasting model. Results are displayed for the overall population (a) as well as separately for age groups
0–59 (b) and 60+ (c)

Turning to the results of the hospitalization model proposed in Section 4.2, the estimated coeffi-
cients for all age and gender combinations can be seen in Figure 6. Those estimates reveal consider-
ably lower hospitalization rates for people younger than 35 than all other age groups. We generally
observe a positive correlation between age and risk of hospitalization for both genders, that is, older
people are more likely to be hospitalized. The only exception to this intuitive finding is seen for
men over 80 years, whose expected hospitalization rates are slightly lower than men aged 60 to 79.
Statistically significant differences between men and women are visible across all age groups. While
women in the youngest and oldest age group tend to have a (slightly) higher hospitalization rate
than men, the opposite holds for the other groups.

Figure 7 depicts the random and smooth spatial effects (on the log-scale). The smooth effect in
Figure 7 (a) paints a clear spatial pattern, with generally higher hospitalization rates in the eastern
parts of Bavaria and lower rates in the north-western districts. This structure reflects the pandemic
situation in Bavaria during autumn 2021, where we observed the most severe dynamics in those
eastern districts. Districts with unexpectedly high or low hospitalization rates (when compared to
their neighbouring areas) can be located on the map of the district-specific random intercepts in
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Figure 6 Estimated linear effects for different age and gender groups in the hospitalization model, where
males aged 15–34 are the reference category. Note: Estimated standard deviations are written in brackets

Figure 7 Estimated smooth spatial effect (a) and district-specific random effect (b) in the hospitalization model
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Figure 7 (b). Contrary to its role as a hotspot during the second wave in autumn 2020, the district
with the lowest random effect is Berchtesgadener Land. We estimate an overall variance of τ 2 =
0.274 for the district-specific random effects.

5 Modelling ICU occupancy

The primary aims of healthcare management efforts during a pandemic include minimizing very
severe and fatal cases, as well as preventing the overload and collapse of the healthcare system.
Information on these very severe cases, among other quantities of interest, can be captured by the
ICU occupancy, which is the focus of our third application case.

5.1 Multinomial model
We consider the occupancy of ICUs where, as described in Section 2, beds are categorized into the
number of vacant beds (Zw,r,1), number of beds occupied by patients not infected with COVID-
19 (Zw,r,2), and number of beds occupied by patients infected with COVID-19 (Zw,r,3). Further,
we denote by Zw,r = (Zw,r,1, Zw,r,2, Zw,r,3) the vector of length three expressing the average number
of ICU-bed occupancy in week w and district r . The canonical GAM for this type of data is a
multinomial model; hence the distributional assumption is:

Zw,r ∼ Multinomial
(
Nw,r , πw,r

)
, (5.1)

where Nw,r = ∑3
j=1 Zw,r, j is the known number of available beds in district r andweekw and πw,r =

(πw,r,1, πw,r,2, πw,r,3) defines the proportion of occupied beds in the respective categories.
One advantage of this multinomial approach is that we implicitly account for displacement ef-

fects commonly observed for ICU occupancy data. Over time, as the number of beds occupied
by patients infected with COVID-19 rise, both free beds and beds occupied by patients not in-
fected with COVID-19 decrease almost simultaneously. In particular, the ‘displacement’ may be
caused by practices such as rescheduling non-urgent operations or other treatments which would
have required an ICU stay, which were already common during the first wave of COVID-19 (Stöß
et al., 2020). These effects lead to negative correlations between the entries in Zw,r , which is nat-
urally accounted for in model (5.1) as the covariance between arbitrary counts Zw,r,k and Zw,r,l is
−Nw,dπw,r,kπw,r,l ∀ k, l ∈ {1, 2, 3}, k �= l.

Taking the number of beds occupied by patients infected with COVID-19 as the reference cate-
gory, we effectively parametrize pairwise comparisons via

log
(

πw,r, j

πw,r,3

)
= ηw,r, j ∀ j = 1, 2, (5.2)
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where the linear predictors ηw,r, j are functions of covariates labeled as xw,r and defined by:

ηw,r, j =θ0, j + θ�
AR(1), j (Z̃w−1,r,1, Z̃w−1,r,2)� + θ�

I, j log(Yw−1,r + δ)+
s j (xLon,r , xLat,r ) + ur, j ∀ j = 1, 2, (5.3)

where θ0, j is the intercept term. Further, we incorporate an autoregressive component in
(5.3) by including the relative ICU occupancy observed in the previous week as a regres-
sor. We denote the distribution of the different occupancies of the previous week as Z̃w−1,d =
(Zw−1,r,1, Zw−1,r,2)/(

∑3
j=1 Zw−1,r, j ), and the respective effect is denoted by θAR(1), j for the j th lin-

ear predictor. We also let (5.3) depend on the previous week’s district and age-specific infec-
tions per 100.000 inhabitants (incidences) denoted by Yw−1,r,a , that are weighted by the coefficient
θI, j ∀ j = 1, 2. To control for district-specific heterogeneity, we include Gaussian random effects,
that is, ur, j ∼ N(0, τ 2) ∀ r ∈ {1, . . . , R} ∀ j = 1, 2. For smooth spatial deviations from these ran-
dom effects, we add a bivariate function s j (·, ·) ∀ j = 1, 2 parametrized by thin-plate splines that
take the longitude and latitude of each district as arguments (see Wood, 2003, for more details). For
notational brevity, let θ denote the joint parameter vector of (5.3) ∀ j = 1, 2.

5.2 Quantification of uncertainty
As stated, the multinomial model has the beneficial property of automatically accounting for dis-
placement effects. Note, however, that patients’ expected length of stay in intensive care may exceed
our time unit of one week, as the average stay of COVID-19 patents is about 13 days (see Vekaria
et al., 2021).This means that not all beds are completely redistributed at every time point of observa-
tion. However, apart from including the previous week’s occupancy in the covariates, our proposed
model does not adequately account for this stochastic variability.

We therefore pursue a Bayesian view and let Nw,r be the number of ICU beds in district r in week
w. This number is known, and we assume that each week only a fixed but unknown proportion α

of beds in the three categories become disposable, where 0 < α < 1. That is to say that αNw,r beds
are redistributed among the three categories, where integrity is assumed but not explicitly included
in the notation for simplicity. We assume that this new allocation is independent of the previous
status of the beds and denote the newly allocated beds with the three-dimensional vector Aw,r =
(Aw,r,1, Aw,r,2, Aw,r,3). This setting translates to:

Zw,r = (1 − α)Zw−1,r + Aw,r .

For the newly allocated beds we still assume a multinomial model:

Aw,r ∼ Multinomial
(
αNw,r , πw,r

)
, (5.4)

with πw,r specified in (5.3). Note, however, that we do not know α and that no information is pro-
vided in the data concerning the length of stay or the number of beds changing their status. To
account for that data deficiency, we impose a Dirichlet distribution on the vector πw,r , where the
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prior information is determined by the available beds, that is,

fπ (πw,r ) ∝
3∏
j=1

π
(1−α)Zw−1,r, j

w,r, j . (5.5)

Combining the prior (5.5) with the likelihood from (5.4), leads to the posterior

fπ (πw,r |Aw,d) ∝
3∏
j=1

π
Aw,r, j+(1−α)Zw−1,r, j

w,r, j =
3∏
j=1

π
Zw,r, j
w,r, j (5.6)

This, in turn, equals the likelihood resulting from the multinomial model and justifies the use of
model (5.2) even though not all beds are allocated weekly. Nevertheless, the central assumption of
independent observations in standard uncertainty quantification in GAMs (Wood, 2006) is violated.
To correct for this bias, we substitute the canonical covariance of the estimators with the robust
sandwich estimator based on M-estimators defined by:

V(θ ) = A(θ )−1B(θ )A(θ )−1, (5.7)

where we set A(θ ) = E
(− ∂

∂θ∂�θ

(θ )

)
, B(θ ) = Var

(
∂
∂θ


(θ )
)
, and 
(θ ) is the logarithmic likelihood re-

sulting from (5.1) or equivalently the logarithm of the posterior of (5.3). See also Stefanski and Boos
(2002) and Zeileis (2006).

5.3 Application to the third wave
We now employ the multinomial logistic regression (5.1) to ICU data recorded during the third
wave between March and June 2021. For the incidence data used in the covariates, we employ the
RKI data; hence we set A= 4 and the age groups are: 15–34, 35–59, 60–79 and 80+. Further, we
normalize all non-binary covariates:

x̃i = xi − x̄√
1
n

∑n
j (xj − x̄)2

with x̄ =
∑n

j xj
n

. (5.8)

This way, we facilitate the interpretation of associations and guarantee a meaningful comparison
between the covariates. Due to space restrictions, we here only present the linear effects from (5.3)
and refer to the Supplementary Material for the random and smooth estimates.

In Figure 8, we visualize the estimated coefficients, including their confidence intervals. The ref-
erence category in both pairwise comparisons is COVID-beds; thus, we refer to the two models as
free vs COVID beds and non-COVID vs COVID beds. In particular, the coefficients relate to the
association between the covariates and the logarithmic odds of a bed not being occupied compared
to being occupied by a patient with COVID-19, shown with blue dots in Figure 8. Analogously, the
orange triangles in Figure 8 illustrate the estimated association between the covariates and the log-
arithmic odds of a bed being occupied by a patient not infected with COVID-19 in comparison to a
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Figure 8 Estimated coefficients with confidence interval of the associations between normalized linear
covariates included in the multinomial model and the logarithmic odds of a bed being free vs occupied by a
patient infected with COVID-19 (blue dots) and the logarithmic odds of a bed being occupied by a patient not
infected with COVID-19 vs a patient infected with COVID-19 (orange triangles)

bed being occupied by a patient infected with COVID-19. To demonstrate the uncertainty of each
estimate, a 95% confidence interval is added. Keeping the other variables constant, the normalized
lagged log-incidences of all age groups generally have a negative effect on the logarithmic odds of
both pairwise comparisons. This translates to the finding that an increase in the incidences leads to
a decrease in the proportion of non-COVID and free-beds in when compared to COVID beds. The
lagged normalized proportion of free and non-COVID beds is estimated to have a stronger, positive
association with the logarithmic odds of both pairwise comparisons. We, therefore, expect a higher
number of non-COVIDbeds in the previous week to be followed by a higher number of non-COVID
beds in the next week.

The model can be extended to a forecasting model, as shown in the supplementary material.
In particular, we demonstrate how forecasting performance changes over the different waves of the
pandemic. In principle, we could also incorporate further covariates like district-specific proportions
of vaccinated people. Unfortunately, these numbers are not very reliable and require sophisticated
cleaning, so we prefer not to present results in this direction here.

6 Discussion

The COVID-19 pandemic poses numerous complex challenges to scientists from different disci-
plines. Statisticians and epidemiologists, in particular, face the problem of extracting meaningful in-
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formation from imperfect, incomplete and rapidly changing data. Generalized additive models are
a powerful tool that, if used correctly, can help solving some of these challenges. In this work, we
have addressed three such challenges where the utilization of GAMs provided meaningful insight.

1. We investigated whether children are the main drivers of the pandemic under a time-varying
case-detection ratio.

2. We modelled hospitalization incidences controlling for delayed registrations, thereby provid-
ing both up to dates estimates of current hospitalization numbers as well as insight on the
demographic and spatio-temporal drivers of COVID-19.

3. We developed an interpretable predictive tool for ICU bed occupancy that is actively used by
the Bavarian government.

We achieved all of those results by using GAMs with different methodological extensions. Never-
theless, the use of our proposed models to extract novel information from the data provided is still
subject to both data-related andmethodological limitations. In general, our data sources are subject
to exogenous shocks (e.g., policy changes) that lead to sudden changes in population behaviour
and pose a danger to the validity of our results. Regarding the study of infection dynamics of
school kids, revised testing policies hinder the long-range comparability of our findings. In the
hospitalization data, the exact date of hospitalization is missing for about 10% of the hospitalized
cases, which we impute by the given registration date of the infection. Furthermore, the records
on the ICU-bed occupancy do not include intrinsic constraints, as the capacity of beds available
to COVID-19 patients does not equate to the capacity of beds available to patients not infected
with COVID-19. There are also methodological limitations. First of all, note that the data is
observational, not experimental. Additionally, the set of covariates in our model can easily be
extended to control for other factors, such as meteorological and socioeconomic ones.

We close this work by emphasizing that the nowcasting model can also be used as a stand-alone
model. In the German COVID-19 Nowcast Hub (KIT), the described model is used among other
nowcasting methods, including the work of Günther et al. (2020) and van de Kassteele et al. (2019),
to estimate hospitalization counts on the national and federal state level in Germany. Apart from a
systematic evaluation of the different approaches, one of the main goals of this project is to combine
individual nowcasts to an ensemble nowcast, which may lead to more accurate estimates.

Supplementary materials

Supplementary materials for this article are available online, including additional information
on the three application cases. The replication code is available in the following repository:
https://github.com/corneliusfritz/Statistical-modelling-of-COVID-19-data.
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Figure A.1 (a): Map of Germany, where the NUTS 1 regions are indicated by the black borders and the
different colours. The NUTS 2 regions, on the other hand, are drawn in grey. Note that all NUTS 1 region
borders are also NUTS 2 region borders. (b): Map of Bavaria where also the NUTS 3 regions are marked. In
the legend, we state the names of each NUTS 1 region
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Appendix: A Spatial unit

We carried out most modelling endeavours presented in this article on the NUTS 3 level, which is
shown on the right side of Figure A.1. The only exception is the Nowcasting model from Section
4.1, where we aggregate all data onto the NUTS 1 level in Bavaria. Moreover, NUTS 1 regions,
depicted on the left side of Figure A.1, are the federal states in Germany and Bavaria is one of them.
In Section 3 and 4, we are only analysing data from Bavaria, while we employ data from complete
Germany in Section 5.
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Aparicio-Castro A, Curran-Sebastian J, Ed-
dleston J, Hanley NA, House T, Kim J, Olsen
W, Pampaka M, Pellis L, Ruiz DP, Schofield
J, Shryane N and Elliot MJ (2021) Hospital
length of stay for COVID-19 patients: Data-
driven methods for forward planning. BMC
Infectious Diseases, 21.

Ward MP, Xiao S and Zhang Z (2020) The
role of climate during the COVID-19
epidemic in new south wales, australia.
Transboundary and Emerging Diseases, 67,
2313–17.

WHO and UNICEF (2020). Advice on the use of
masks for children in the community in the
context of COVID-19: Annex to the advice
on the use ofmasks in the context of COVID-
19, 21 August 2020. Technical report. URL
https://apps.who.int/iris/handle/10665/
333919. (Accessed: June 17, 2022).

Wood SN (2003) Thin plate regression splines.
Journal of the Royal Statistical Society. Se-
ries B (Statistical Methodology), 65, 95–
114.

Wood SN (2006) On confidence intervals for gener-
alized additive models based on penalized re-
gression splines. Australian and New Zealand
Journal of Statistics, 48, 445–64.

Wood SN (2017) Generalized additive models: An
introduction with R. Boca Raton: CRC press.

Wood SN (2020) Inference and computation with
generalized additive models and their exten-
sions. Test, 29, 307–39.

Wood SN (2021) Inferring UKCOVID-19 fatal in-
fection trajectories from daily mortality data:
Were infections already in decline before the
uk lockdowns? Biometrics.

Worby CJ, Chaves SS, Wallinga J, Lipsitch M,
Finelli L and Goldstein E (2015) On the rel-
ative role of different age groups in influenza
epidemics. Epidemics, 13, 10–6.

Xie J and Zhu Y (2020) Association between am-
bient temperature and COVID-19 infection
in 122 cities from china. Science of The To-
tal Environment, 724, 138201.

Zeileis A (2006) Object-oriented computation of
sandwich estimators. Journal of Statistical
Software, 16, 1–16.

Statistical Modelling xxxx; xx(x): 1–24


