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Networks are ubiquitous in economic research on organizations, trade, and many other areas. 
However, while economic theory extensively considers networks, no general framework for their 
empirical modeling has yet emerged. We thus introduce two different statistical models for this 
purpose – the Exponential Random Graph Model (ERGM) and the Additive and Multiplicative 
Effects network model (AME). Both model classes can account for network interdependencies 
between observations, but differ in how they do so. The ERGM allows one to explicitly specify 
and test the influence of particular network structures, making it a natural choice if one is 
substantively interested in estimating endogenous network effects. In contrast, AME captures 
these effects by introducing actor-specific latent variables affecting their propensity to form 
ties. This makes the latter a good choice if the researcher is interested in capturing the effect 
of exogenous covariates on tie formation without having a specific theory on the endogenous 
dependence structures at play. After introducing the two model classes, we showcase them 
through real-world applications to networks stemming from international arms trade and foreign 
exchange activity. We further provide full replication materials to facilitate the adoption of these 
methods in empirical economic research.

1. Introduction

The study of networks has established itself as a central topic in economic research (Jackson, 2008). Within the broader con-
text of the study of complex and interdependent systems (see e.g. Flaschel et al., 1997, 2007, 2018), networks can be defined as 
interconnected structures which can naturally be represented through graphs. In the economic literature, networks have been ex-
tensively considered from a theoretical perspective, with the primary goal of understanding how economic behavior is shaped by 
interaction patterns (Jackson and Rogers, 2007). Indeed, the adequate modelling of such interactions has been described as one of 
the main empirical challenges in economic network analysis (Jackson et al., 2017). Research in this direction on, e.g., organizations 
as networks, diffusion in networks, network experiments, or network games, is surveyed in Bramoullé et al. (2016), Jackson (2014), 
and Jackson et al. (2017). These theoretical advances find application in many different fields in which network structures naturally 
arise, such as national and international trade, commercial agreements, firms’ organization, and collaboration activity. However, 
such advances have not yet been accompanied by a corresponding shift in the standard methods used to empirically validate them. 

* Corresponding author.
0167-2681/© 2023 Elsevier B.V. All rights reserved.

E-mail address: giacomo.denicola@stat.uni-muenchen.de (G. De Nicola).

https://doi.org/10.1016/j.jebo.2023.09.021
Received 28 October 2022; Received in revised form 7 July 2023; Accepted 18 September 2023

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jebo
mailto:giacomo.denicola@stat.uni-muenchen.de
https://doi.org/10.1016/j.jebo.2023.09.021
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jebo.2023.09.021&domain=pdf
https://doi.org/10.1016/j.jebo.2023.09.021


Journal of Economic Behavior and Organization 215 (2023) 351–363G. De Nicola, C. Fritz, M. Mehrl et al.

Some recent contributions (see e.g. Atalay et al., 2011; Chaney, 2014; Morales et al., 2019) develop estimators tailored specifically to 
their network-based theoretical models, but more generally applicable modeling frameworks for the analysis of real-world network 
data have not yet emerged. Statistical methods specifically designed to empirically test theories where interdependencies arise from 
network structures, such as the Exponential Random Graph Model (ERGM), exist but are not yet widely used by economists. Jackson 
(2014), for instance, discusses ERGMs but argues that they “suffer from proven computational problems” (2014, p.76). Jackson et 
al. (2017) further explain that “it is practically impossible to estimate the likelihood of a given network at even a moderately large 
scale”, concluding that with ERGMs, “there is an important computational hurdle that must be overcome in working with data” 
(2017, p.85).

Contrasting this assessment, we argue that recent work in the realm of empirical network analysis provides robust and scalable 
methods with readily available implementations in the 𝚁 statistical software (R Core Team, 2021). Computational issues thus do 
not represent an insurmountable barrier to employ robust inferential network methods anymore. In this paper, we demonstrate the 
effectiveness and usability of some of those methods by applying them to real economic data. We specifically focus on models which 
aim to capture the mechanisms leading to network formation, i.e. to measure how the probability of forming a tie is influenced by 
(a) nodal characteristics, (b) pairwise covariates, and (c) the rest of the network. In particular, our focus is on Exponential Random 
Graph Models (ERGM) (Robins et al., 2007a) and Additive and Multiplicative Effect (AME) network models (Hoff, 2021), respectively 
implemented in the 𝚁 packages 𝚜𝚝𝚊𝚝𝚗𝚎𝚝 (Handcock et al., 2008b) and 𝚊𝚖𝚎𝚗 (Hoff, 2015). We find these two model classes to be among 
the most promising ones for applications in the economic sciences, as they are well suited for answering two broad categories of 
research questions. The ERGM is an ideal fit if, based on economic theory, the researcher envisages a particular dependence structure 
for the existence of ties in the network at hand and wants to test whether their theory is corroborated by empirical data. On the other 
hand, AME, and more generally continuous latent variable models, are a good choice when the researcher is interested in capturing 
the effect of exogenous variables on tie formation without having prior knowledge on which endogenous network dependence 
mechanisms are at play. In this case, AME offers the possibility to estimate the effect of both nodal and pairwise covariates while 
simultaneously controlling for network effects, which may induce bias if ignored (see Lee and Ogburn, 2021). In addition, the 
estimated latent structure can provide insight on the underlying network mechanisms for which they are controlling.

The principal aim of this paper is to showcase ERGM and AME by focusing on their value for economic research. After introducing 
each model class, we demonstrate their empirical usage by respectively applying them to two relevant economic questions stemming 
from real-world networks. We first use the ERGM to model the international trade of major conventional weapons, where a directed 
tie exists if one country transfers arms to another. In line with Chaney (2014), network effects such as directed triadic closure (e.g. 
the positive impact of an increase in the volume of trade between countries A and B on the probability that country C, that already 
exports to A, starts exporting to B) are of explicit theoretical interest in this application, and the ERGM allows for their proper 
specification and testing. We then make use of the AME model to study a historical network of global foreign exchange activity, 
where a directed edge is present if one country’s national currency is actively traded within the other country. AME allows us to 
estimate how relevant country features, such as per-capita gdp and the gold standard, and pairwise covariates, such as the distance 
between two countries and their reciprocal trade volume, influence tie formation, while controlling for network effects to provide 
unbiased estimates. We further compare the two model classes, weighing pros and cons of each approach and providing guidance 
on which tool is appropriate for applications to different empirical settings and research questions. Finally, in addition to a step-by-
step analysis and interpretation of these application cases, we provide full replication code in our GitHub repository,1 allowing for 
seamless reproducibility. We, therefore, demonstrate the “off-the-shelf” applicability of these methods, and offer applied researchers 
a head-start in employing them to study substantive economic problems.

Our contribution is related to various strands of the growing literature on economic networks (e.g. Jackson and Rogers, 2007; 
Jackson, 2008; Bramoullé et al., 2016). Due to its focus on economic questions, our work differs from surveys in physics (Newman, 
2003), statistics (Goldenberg et al., 2010), or political science (Cranmer et al., 2017). Several articles provide overviews and surveys 
of existing economic network models from a theoretical perspective (Jackson, 2014; Graham, 2015; Jackson et al., 2017; De Paula, 
2020). None of these articles concentrates on discussing broadly applicable statistical modeling frameworks, such as ERGM and AME, 
from an empirical perspective. In this sense our paper is similar in spirit to van der Pol (2019) who, however, only focuses on ERGM, 
without comparing alternative approaches. Indeed, one of the goals of this paper is to shed light on the emerging AME model class 
(and, more generally, on latent variable network models) for future applications in the economic literature.

The remainder of the paper is structured as follows. Section 2 discusses existing literature and presents the mathematical and 
notational framework used to define and discuss networks throughout the paper. Section 3 introduces the ERGM and applies it to 
the international arms trade network. Section 4 is dedicated to AME and its application to the global foreign exchange network. 
Section 5 concludes the paper with a brief discussion on the two model classes, contrasting their different uses and highlighting pros 
and cons of each approach.
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2. Economic networks

2.1. Related literature

Even though network structures naturally arise in many aspects of economics and are subject of prominent research in the field, 
much of the previous literature has ignored the implied interdependencies, instead opting for regression models assuming ties to be 
independent conditional on the covariates (e.g. Anderson and Van Wincoop, 2003, Rose, 2004, Lewer and Van den Berg, 2008). This 
assumption is often unreasonable in practice. It would, for example, imply that Germany imposing economic sanctions on Russia is 
independent of Italy imposing sanctions on Russia, and, in the directed case, even of Russia imposing them on Germany itself. While 
no standard framework for the modeling of empirical network data has emerged in economics so far, a number of contributions in – 
or adjacent to – the field do make use of statistical network models. We shortly survey these works here to show that the models we 
present are indeed suitable for the analysis of economic data. Possibly the most obvious kind of economic network is the international 
trade network (see Chaney, 2014) and many of these studies accordingly seek to model the formation of trade ties. In this vein, two 
early studies (Ward and Hoff, 2007; Ward et al., 2013) apply latent position models to show that trade exhibits a latent network 
structure beyond what a standard gravity model can capture (see also Fagiolo, 2010; Dueñas and Fagiolo, 2013). More recently, 
numerous contributions have used the ERGM to explicitly theorize and understand network interdependence in the general trade 
(Herman, 2022; Liu et al., 2022; Smith and Sarabi, 2022) as well as the trade in arms (Thurner et al., 2019; Lebacher et al., 2021), 
patents (He et al., 2019), and services (Feng et al., 2021).

That being said, empirical research on economic networks is not limited to trade. Smith et al. (2019) use multilevel ERGMs to 
study a production network consisting of ownership ties between firms at the micro-level and trade ties between countries at the 
macro-level, while Mundt (2021) explores the European Union’s sector-level production network via ERGMs as well as an alternative 
methodology, the stochastic actor-oriented model (SAOM). The latter is another prominent tool in the realm of network analysis, 
which is suitable for modeling longitudinal network data. As we, in the interest of brevity, focus on models for static networks (i.e. 
networks that are observed only at one point in time), we do not treat the SAOM, and instead refer to Snijders (1996, 2017) for an 
introduction to the model class. Going back to empirical research on economic networks in the literature, Fritz et al. (2023) deploy 
ERGMs to investigate patent collaboration networks. Studies on foreign direct investments document network influences using latent 
position models (Cao and Ward, 2014), or seek to model them via extensions of the ERGM (Schoeneman et al., 2022). Finally, 
economists also study networks of interstate alliances and armed conflict (see e.g. Jackson and Nei, 2015; König et al., 2017), both 
of which have been modeled via ERGMs (Cranmer et al., 2012; Campbell et al., 2018) and AME (Dorff et al., 2020; Minhas et al., 
2022). This short survey indicates that both ERGM and AME can be used to answer questions which are of substantive interest to 
economists.

2.2. Setup

Before introducing models for networks in which dependencies between ties are expected, we briefly introduce the mathematical 
framework for networks, as well as the necessary notation. Let 𝒚 =

(
𝑦𝑖𝑗

)
𝑖,𝑗=1,...,𝑛 be the adjacency matrix representing the observed 

binary network, comprising 𝑛 fixed and known agents (nodes). In this context, 𝑦𝑖𝑗 = 1 indicates an edge from agent 𝑖 to agent 𝑗, while 
𝑦𝑖𝑗 = 0 translates to no edge between the two. Since self-loops are not admitted for most studied networks, the diagonal of 𝒚 is left 
unspecified or set to zero. Depending on the application, the direction of an edge can carry additional information. If it does, we call 
the network directed. In this article, we mainly focus on this type of networks. Also note that all matrix-valued objects are written 
in bold font for consistency. In addition to the network connections, we often observe covariate information on the agents, which 
can be at the level of single agents (e.g. the gdp of a country) or at the pairwise level (e.g. the distance between two countries). We 
denote covariates by 𝒙1, ..., 𝒙𝑝, and our goal is to specify a statistical model for 𝒀 , that is the random variable corresponding to 𝒚, 
conditional on 𝒙1, ..., 𝒙𝑝. A natural way to do this is to specify a probability distribution over the space of all possible networks, which 
we define by the set  . Two main characteristics differentiate our modeling endeavor from classical regression techniques, such as 
Probit or logistic regression models. First, for most applications, we only observe one realization 𝒚 from 𝒀 , rendering the estimation 
of the parameters to characterize this distribution particularly challenging. Second, the entries of 𝒀 are generally co-dependent; thus, 
most conditional dependence assumptions inherent to common regression models are violated. Generally, we term mechanisms that 
induce direct dependence between edges to be endogenous, while all effects external to the modeled network, such as covariates, are 
called exogenous.

3. The exponential random graph model

The ERGM is one of the most popular models for analyzing network data. First introduced by Holland and Leinhardt (1981) as 
a model class that builds on the platform of exponential families, it was later extended with respect to fitting algorithms and more 
complex dependence structures (Lusher et al., 2012; Robins et al., 2007b). We next introduce the model step-by-step to highlight its 
353
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Fig. 1. Illustration of directed edgewise-shared partner statistics for 𝑘 agents. Circles represent agents, and black lines represent edges between them. The names 
follow 𝚜𝚝𝚊𝚝𝚗𝚎𝚝 nomenclature: OTP = “Outgoing Two-Path”, ISP = “Incoming Shared Partner”, OSP = “Outgoing Shared Partner”, and ITP = “Incoming Two-Path”.

3.1. Accounting for dependence in networks

We begin with the simplest possible stochastic network model, the Erdös-Rényi-Gilbert model (Erdös and Rényi, 1959; Gilbert, 
1959), where all edges are assumed to be independent and to have the same probability of being observed. In stochastic terms, each 
observed tie is then a realization of a binomial random variable with success probability 𝜋, which yields

ℙ𝜋 (𝒀 = 𝒚) =
𝑛∏

𝑖=1

∏
𝑗≠𝑖

𝜋𝑦𝑖𝑗 (1 − 𝜋)1−𝑦𝑖𝑗 (1)

for the probability to observe 𝒚. Evidently, model (1), which implies equal probability for all possible ties, is too restrictive to be 
applied to real world problems. In the next step, we, therefore, additionally incorporate covariates 𝑥𝑖𝑗 by letting 𝜋 vary depending on 
those covariates, leading to edge-specific probabilities 𝜋𝑖𝑗 . Following the common practice in logistic regression, we parameterize the 

log-odds by log
(

𝜋𝑖𝑗

1−𝜋𝑖𝑗

)
= 𝜃⊤𝑥𝑖𝑗 , where 𝑥𝑖𝑗 is a vector of exogenous statistics with the first entry set to 1 to incorporate an intercept, 

and get

ℙ𝜃(𝒀 = 𝒚) =
𝑛∏

𝑖=1

∏
𝑗≠𝑖

(
exp{𝜃⊤𝑥𝑖𝑗}

1 + exp{𝜃⊤𝑥𝑖𝑗}

)𝑦𝑖𝑗
(

1
1 + exp{𝜃⊤𝑥𝑖𝑗}

)1−𝑦𝑖𝑗

. (2)

From (2), the analogy to standard logistic regression being a special case of generalized linear models (Nelder and Wedderburn, 
1972) becomes apparent. The joint distribution of 𝒀 can be formulated in exponential family form, yielding

ℙ𝜃(𝒀 = 𝒚|𝑥) = exp{𝜃⊤𝑠(𝒚)}
𝜅(𝜃)

, (3)

where 𝑠(𝒚) = (𝑠1(𝒚), ..., 𝑠𝑝(𝒚)), 𝑠𝑞(𝒚) =
∑𝑛

𝑖=1
∑

𝑗≠𝑖 𝑦𝑖𝑗𝑥𝑖𝑗,𝑞 ∀ 𝑞 = 1, ..., 𝑝, with 𝑥𝑖𝑗,𝑞 as 𝑞− 𝑡ℎ entry in 𝑥𝑖𝑗 and 𝜅(𝜃) =∏𝑛

𝑖=1
∏

𝑗≠𝑖(1 +exp{𝜃⊤𝑥𝑖𝑗}). 
In the jargon of exponential families, we term 𝑠(𝒚) sufficient statistics.

Newcomb (1979) observed that many observed networks exhibit complicated relational mechanisms, including reciprocity, which 
we can account for by extending the set of sufficient statistics. Under reciprocity, an edge 𝑌𝑗𝑖 influences the probability of its 
reciprocal edge 𝑌𝑖𝑗 to occur. Analyzing social networks, we would expect that the probability of agent 𝑖 nominating agent 𝑗 to be 
a friend is higher if agent 𝑗 has nominated agent 𝑖 as a friend. Holland and Leinhardt (1981) extended model (1) to such settings 
with the so-called 𝑝1 model. To represent reciprocity, we assume dyads, each of them defined by (𝑌𝑖𝑗 , 𝑌𝑗𝑖), to be independent of 
one another, which again yields an exponential family distribution similar to (3) with sufficient statistics that count the number of 
mutual ties (𝑠Mut(𝒚) =

∑
𝑖<𝑗 𝑦𝑖𝑗𝑦𝑗𝑖), of edges (𝑠Edges(𝒚) =

∑𝑛

𝑖=1
∑

𝑗≠𝑖 𝑦𝑖𝑗 ), and the in- and out-degree statistics for all degrees observed in 
the networks.2 Agents’ in- and out-degrees are their number of incoming and outgoing edges, and relate to their relative position in 
the network (Wasserman and Faust, 1994).

Next to reciprocity, another important endogenous network mechanism is transitivity, originating in the structural balance theory 
of Heider (1946) and adapted to binary networks by Davis (1970). Transitivity affects the clustering in the network, implying that 
a two-path between agents 𝑖 and 𝑗, i.e. 𝑦𝑖ℎ = 𝑦ℎ𝑗 = 1 for some other agent ℎ, affects the edge probability of 𝑌𝑖𝑗 . Put differently, 𝑌𝑖𝑗

and 𝑌𝑘ℎ are assumed to be independent iff 𝑖, 𝑗 ≠ 𝑘 and 𝑖, 𝑗 ≠ ℎ. Frank and Strauss (1986) proposed the Markov model to capture such 
dependencies. For this model, the sufficient statistics are star-statistics, which are counts of sub-structures in the network where one 
agent has (incoming and outgoing) edges to between 0 and 𝑛 − 1 other agents, and counts of triangular structures. If the network is 
directed it is possible to define different types of triangular structures, as depicted in Fig. 1.

3.2. Extension to general dependencies

Starting from the Erdös-Rényi-Gilbert model, which is a special case of a generalized linear model, we have consecutively allowed 
for more complicated dependencies between edges, resulting in the Markov graphs of Frank and Strauss (1986). Over this course, we 
showed that each model can be stated in exponential family form, characterized by a particular set of sufficient statistics. We now 
354
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make this more explicit to allow for more general dependence structures, and specify a probabilistic model for 𝒀 directly through 
the sufficient statistics.3 Wasserman and Pattison (1996) introduced this model as

ℙ𝜃(𝒀 = 𝒚) =
exp{𝜃⊤𝒔(𝒚)}

𝜅(𝜃)
, (4)

where 𝜃 is a 𝑝-dimensional vector of parameters to be estimated, 𝒔(𝒚) is a function calculating the vector of 𝑝 sufficient statistics 
for network 𝒚, and 𝜅(𝜃) =∑

𝒚̃∈ exp{𝜃⊤𝑠(𝒚̃)} is a normalizing constant to ensure that (4) sums up to one over all 𝒚 ∈  . To estimate 
𝜃, Handcock (2003) adapted the Monte Carlo Maximum Likelihood technique of Geyer and Thompson (1992), approximating the 
logarithmic likelihood ratio of 𝜃 and a fixed 𝜃0 via Monte Carlo quadrature (see Hunter et al., 2012, for an in-depth discussion).

A problem often encountered when fitting model (4) to networks is degeneracy (Handcock, 2003; Schweinberger, 2011). Degen-
erate models are characterized by probability distributions that put most probability mass either on the empty or on the full network, 
i.e., where either all or no ties are observed. To detect this behavior, one can use a goodness-of-fit procedure where observed network 
statistics are compared to statistics of networks simulated under the estimated model (Hunter et al., 2008). To address it, Snijders 
et al. (2006) and Hunter and Handcock (2006) propose weighted statistics that, in many cases, have better empirical behavior. De-
generacy commonly affects model specifications encompassing statistics for triad counts and multiple degree statistics. For in-degree 
statistics, we would thus incorporate the geometrically-weighted in-degree,

𝐺𝑊 𝐼𝐷𝐸𝐺(𝒚, 𝛼) = exp{𝛼}
𝑛−1∑
𝑘=1

(
1 − (1 − exp{−𝛼})𝑘

)
𝐼𝐷𝐸𝐺𝑘(𝒚), (5)

where 𝐼𝐷𝐸𝐺𝑘(𝒚) is the number of agents in the studied network with in-degree 𝑘 and 𝛼 is a fixed decay parameter. One can substitute 
𝐼𝐷𝐸𝐺𝑘(𝒚) in (5) with the number of agents with a specific out-degree, 𝑂𝐷𝐸𝐺𝑘(𝒚), to capture the out-degree distribution. We term 
these statistics geometrically weighted since the weights in (5) are a geometric series.4 A positive estimate implies that an edge from 
a low-degree agent is more likely than an edge from a high-degree agent, resulting in a decentralized network. If, on the other hand, 
the corresponding coefficient is negative, one may interpret it as an indicator for a centralized network.

To capture clustering, we have to define the distribution of edgewise-shared partners (ESP). This distribution is defined as the 
relative frequency of edges in the network with a specific number of 𝑘 shared partners, that we denote by 𝐸𝑆𝑃 (𝒚) for 𝑘 ∈ {1, ..., 𝑛 −2}. 
As shown in Fig. 1, various versions of edgewise-shared partner statistics can be found in directed networks, depending on the 
direction of the edges between the three agents involved. Geometrically weighted statistics can be stated for them in a similar 
manner as for degree statistics. For example, for the outgoing two-path (OTP, see Fig. 1a), this is

𝐺𝑊 𝑂𝑇𝑃 (𝒚, 𝛼) = exp{𝛼}
𝑛−2∑
𝑘=1

(
1 − (1 − exp{−𝛼})𝑘

)
𝑂𝑇𝑃𝑘(𝒚). (6)

In this case, a positive coefficient indicates that sharing ties with third actors increases the probability of observing an event between 
two agents.

Along with capturing endogenous network statistics, it is also possible to extend the ERGM framework to include the temporal 
dimension, that is, to model longitudinal network data. This is done quite naturally through use of a Markov assumption on the 
temporal dependence of subsequently observed networks, giving rise to the Temporal Exponential Random Graph Model (TERGM). 
As we here focus on static networks, we do not cover this in depth, and refer to Hanneke et al. (2010) for an introduction to the 
TERGM, and to Fritz et al. (2020) for a more general discussion on temporal extensions to the model class.

In summary, the ERGM allows to account for network dependencies via explicitly specifying them in 𝒔(𝒚). A large variety of 
potential network statistics, such as those given in (5) and (6), can be included in 𝒔(𝒚), enabling to test for their influence in the 
formation of the observed network. By allowing for this explicit inclusion and testing of network statistics, the ERGM requires 
researchers to at least have an implicit theory regarding what types of network dependence should exist in the network they study. 
Without such theory to guide the selection of network statistics, the range of potential network dependencies, and corresponding 
statistics, is virtually endless.5 As a result, the ERGM is best suited for research questions that explicitly concern interdependencies 
within the network. If these interdependencies are, instead, only a potential source of bias the researcher wants to control for, the 
AME model (introduced in Section 4) may be a better fit.

3.3. Application to the international arms trade network

We next make use of the ERGM to analyze the international arms transfer network. Recent studies on trade in Major Conventional 
Weapons (MCW), such as fighter aircraft or tanks, not only emphasize its networked nature, but also argue that this very nature is 
of substantive theoretical interest (Thurner et al., 2019; Fritz et al., 2021). In line with Chaney (2014), triadic trade structures are 
held to reveal information regarding the participants’ economic and security interests. Explicitly modeling these structures allows us 

3 Alternatively, (4) can also be derived as the equilibrium distribution of a strategic game where players myopically reassess and update their links to optimize 
their utility in the network (see Mele, 2017; Boucher and Mourifié, 2017).

4 Geometrically weighted statistics require setting the decay parameter 𝛼. We set 𝛼 = log(2), though it can also be estimated as an additional parameter given 
sufficient data (Hunter and Handcock, 2006).
355
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Fig. 2. Illustration of the international arms trade network in 2018. Countries are labeled by their ISO 3166-1 codes, and a directed edge from node 𝑖 to node 𝑗
indicates major conventional weapons being delivered from country 𝑖 to country 𝑗.

to test hypotheses regarding their effects on further arms transfers. Accordingly, we seek to model the network of international arms 
transfers in the year 2018, where countries are nodes and a directed edge indicates MCW being delivered from country 𝑖 to country 
𝑗. Our interest here mainly lies in uncovering the network’s endogenous mechanisms. MCW trade data come from SIPRI (2021), and 
the resulting network is depicted in Fig. 2, obtained using the Yifan Hu force-directed graph drawing algorithm (Hu, 2005) with the 
software Gephi (Bastian et al., 2009).

For estimating the parameters characterizing the ERGM, we use the R package 𝚎𝚛𝚐𝚖 (Handcock et al., 2008a). Since evaluating 
𝜅(𝜽) from (4) necessitates calculating the sum of || = 2𝑛(𝑛−1) terms, we rely on MCMC approximations thereof to obtain the maximum 
likelihood estimates (see Handcock, 2003 and Hummel et al., 2012 for additional information on this topic). As discussed above, 
the ERGM allows us to use both exogenous (node-specific and pair-specific) attributes as well as endogenous structures to model the 
network of interest. Here, we select both types of covariates based on existing studies on the arms trade (Thurner et al., 2019; Fritz et 
al., 2021). In addition to an edges term, which corresponds to the intercept in standard regression models, we include importers’ and 
exporters’ logged GDP, whether they share a defense pact, their absolute difference in “polity” scores (a type of democracy index), 
and their geographical distance.6 We lag these covariates by three years, reflecting the median time between order and delivery for 
MCW delivered in 2018.7 More importantly, for the purpose of demonstrating how to model network data with the ERGM, we specify 
five endogenous network terms. In- and out-degree (IDEG and ODEG) measure, respectively, importers’ and exporters’ trade activity, 
and thus capture whether highly active importers and exporters are particularly attractive trading partners, or if they are instead 
less likely to form additional trade ties. Moreover, we specify a reciprocity term to capture whether countries tend to trade MCW 
uni- or bidirectionally. We further include two types of triadic structures, which represent transitivity and a shared supplier between 
countries 𝑖 and 𝑗. The transitivity term counts how often country 𝑖 exports arms to 𝑗 while 𝑖 exports to 𝑘, which in turn exports 
to 𝑗, thus capturing 𝑖’s tendency to directly trade with 𝑗 if they engage in indirect trade (OTP, see Fig. 1a). In contrast, the shared 
supplier term counts how often country 𝑖 sends arms to 𝑗 while both import weapons from a shared supplier 𝑘 (ISP, see Fig. 1b). 
Note that, given the issue of degeneracy discussed above, we use geometrically weighted versions of all endogenous statistics except 
reciprocity. Finally, we include a repetition term capturing whether arms transfer dyads observed in 2018 had already occurred in 

6 Data for these covariates come from the 𝚙𝚎𝚊𝚌𝚎𝚜𝚌𝚒𝚎𝚗𝚌𝚎𝚛 package (Miller, 2022).
7 We use the median as the distribution of times between order and delivery is quite skewed. As shown in the Supplementary Materials, our substantive results 

remain unchanged when using 4- and 5-year lags instead, which reflect the average time between order and delivery. In particular, the ERGM outperforms the logistic 
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Table 1

Estimated coefficients and standard errors (in parentheses) of the 
ERGM and the logistic regression model for the international arms 
trade network in 2018.

ERGM Logit

Intercept −15.356 (2.017)∗∗∗ −28.197 (1.731)∗∗∗

Repetition 3.254 (0.141)∗∗∗ 3.957 (0.141)∗∗∗

Distance −0.081 (0.087) −0.239 (0.088)∗∗

Abs. Diff. Polity −0.001 (0.010) −0.003 (0.012)
Alliance 0.350 (0.207) 0.209 (0.207)
log-GDP (Sender) 0.300 (0.050)∗∗∗ 0.588 (0.045)∗∗∗

log-GDP (Receiver) 0.166 (0.049)∗∗∗ 0.355 (0.039)∗∗∗

Mutual −0.311 (0.438)
GWIDEG −1.478 (0.296)∗∗∗

GWODEG −2.848 (0.296)∗∗∗

GWOTP −0.146 (0.104)
GWISP 0.210 (0.083)∗

AIC 1769.718 1891.984
BIC 1866.053 1948.179
Log Likelihood −872.859 −938.992

∗∗∗𝑝 < 0.001; ∗∗𝑝 < 0.01; ∗𝑝 < 0.05.

any of the previous three years. Results of this ERGM, as well as, for comparison’s sake, a logistic regression that includes the same 
exogenous covariates but does not capture any of the endogenous network structures, are presented in Table 1. These results can be 
compared directly, as, just like in a logistic regression model, coefficients in the ERGM indicate the additive change in the log odds of 
a tie occurring in association with a unit change in the respective variable. In this sense, the logistic regression model can be viewed 
as a special case of the ERGM in which the network effects are omitted. From the table, we can see how the two models differ both in 
their in-sample fit, as captured by AIC and BIC,8 as well as in the substantive effects they identify for the exogenous covariates. The 
repetition coefficient is positive and statistically significant in both models, but differs substantially in its size. An arms transfer edge 
having occurred at least once in 2015–17 increases the log odds of it occurring also in 2018 by 3.96 in the Logit, but only by 3.26 
in the ERGM. Similarly, both models agree that the log odds of an arms transfer occurring increase with the economic size of the 
sender and receiver, as captured by their respective GDPs, but the coefficients retrieved by the Logit are approximately double the 
size of those in the ERGM, thus attributing more explanatory power to them. Also in this vein, the effect of the geographical distance 
between sender and receiver is three times as large in the logistic regression as in the ERGM and, while statistically significant in the 
former, indistinguishable from zero in the latter. Finally, both models report small and statistically insignificant effects for countries’ 
polity difference and alliance ties. Taken together, however, there are clear, substantively meaningful differences in the effect sizes 
and, in the case of geographical distance, even statistical significance of the coefficients that the ERGM and Logit recover for the 
exogenous covariates.

Furthermore, three of the endogenous statistics included in the ERGM exhibit statistically significant effects on the probability 
of arms being traded. The results for in- and out-degree replicate the finding by Thurner et al. (2019), showing that highly active 
importers and exporters are less likely to form additional trade ties. In the ERGM, coefficients can also be interpreted at the global 
level, in addition to the edge-level interpretation given above. The shared supplier term having a (statistically significant) positive 
coefficient indicates, at the edge level, that an exporter is more likely to transfer weapons to a potential receiver if both of them 
import arms from the same source. Globally, on the other hand, the same coefficient means that the observed network exhibits more 
shared supplier configurations – where country 𝑖 sends weapon to 𝑗 while both receive arms from 𝑘 – than would be expected in a 
random network of the same size. On the whole, the results presented in Table 1 offer an example for the striking differences that 
modeling network structures (instead of assuming them away) can make. The ERGM and Logit, while identical in their non-network 
covariates, report substantively different effects for these covariates, and, in the ERGM, network effects are also found to drive the 
formation of arms transfer edges.

4. The additive and multiplicative effect network model

4.1. Latent variable network models

Another way to account for network dependencies is by making use of latent variables. Models within this class assume that 
latent variables 𝑍𝑖 are associated with each node 𝑖. Depending on the type of model, these latent variables can either be discrete 
(e.g. indicating group memberships for each node) or continuous, and affect the connection probability in different ways (Matias 
and Robin, 2014). An early (but still popular) approach in this direction is the stochastic blockmodel, which assumes that each agent 

8 As shown in the Supplementary Material, the ERGM also outperforms the Logit model when assessing their respective areas under the receiver-operator and 
precision-recall curves. In line with Hunter and Handcock (2006), one could also calculate the likelihood ratio test statistic from the log likelihoods reported in 
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possesses a latent, categorical class (or group membership). Nodes within each class are assumed to be stochastically equivalent 
in their connectivity behavior, meaning that the probability of two nodes to connect depends solely on their group memberships 
(Holland et al., 1983; De Nicola et al., 2022). This family of models is attractive due to its simplicity in detecting and describing 
subgroups of nodes in networks. In many applications, however, discrete groupings fail to adequately represent the observed data, 
as agents behave more heterogeneously. Moving from discrete to continuous latent variable network models, another prominent 
approach is the latent distance model. The latter postulates that agents are positioned in a latent Euclidean “social space”, and that 
the closer they are within it, the more likely they are to form ties (Hoff et al., 2002). More precisely, the classical latent distance 
model specifies the probability of observing an edge between nodes 𝑖 and 𝑗, conditional on 𝑍, through

ℙ𝜃(𝑌𝑖𝑗 = 1|𝒁) =
exp{𝜃⊤𝑥𝑖𝑗 − ‖𝒛𝑖 − 𝒛𝑗‖}

1 + exp{𝜃⊤𝑥𝑖𝑗 − ‖𝒛𝑖 − 𝒛𝑗‖} , (7)

where 𝒁 = (𝒛1, ..., 𝒛𝑛) denotes the latent positions of the nodes in the 𝑑-dimensional latent space, and 𝜃 is the coefficient vector 
for the covariates 𝑥𝑖𝑗 . The latent positions 𝒁 are assumed to originate independently from a spherical Gaussian distribution, i.e. 
𝑍 ∼𝑁𝑑 (0, 𝜏2𝑰𝑑 )), where 𝑰𝑑 indicates a 𝑑-dimensional identity matrix.

Latent distance models are particularly attractive for social networks in which triadic closure plays a major role, and where 
nodes with similar characteristics tend to form connections with each other (i.e. homophilic networks, see Rivera et al., 2010). It is 
also possible to add nodal random effects to the model, to control for agent-specific heterogeneity in the propensity to form edges 
(Krivitsky et al., 2009). The model then becomes

ℙ𝜃(𝑌𝑖𝑗 = 1|𝒁, 𝑎, 𝑏) =
exp{𝜃⊤𝑥𝑖𝑗 − ‖𝒛𝑖 − 𝒛𝑗‖+ 𝑎𝑖 + 𝑏𝑗}

1 + exp{𝜃⊤𝑥𝑖𝑗 − ‖𝒛𝑖 − 𝒛𝑗‖+ 𝑎𝑖 + 𝑏𝑗}
, (8)

where 𝑎 = (𝑎1, ..., 𝑎𝑛) and 𝑏 = (𝑏1, ..., 𝑏𝑛) are node-specific sender and receiver effects that account for the individual agents’ propensity 
to form ties, with 𝑎 ∼𝑁𝑛(0, 𝜏2𝑎𝑰𝑛) and 𝑏 ∼𝑁𝑛(0, 𝜏2𝑏 𝑰𝑛).

Despite its advantages and its fairly simple interpretation, a Euclidean latent space is unable to effectively approximate the 
behavior of networks where nodes that are similar in terms of connectivity behavior are not necessarily more likely to form ties (Hoff, 
2008), such as, e.g., many networks of amorous relationships (Ghani et al., 1997; Bearman et al., 2004). More generally, the latent 
distance model tends to perform poorly for networks in which stochastic equivalence does not imply homophily and triadic closure, 
i.e., when nodes which behave similarly in terms of connectivity patterns towards the rest of the network do not necessarily have a 
higher probability of being connected among themselves. This is often the case in economics, where real-world networks can exhibit 
varying degrees and combinations of stochastic equivalence, triadic closure and homophily. Moreover, it is often a priori unclear 
which of these mechanisms are at play in a given observed network. In this context, agent-specific multiplicative random effects 
instead of the additive latent positions allow for simultaneously representing all these patterns (Hoff, 2005). Further developments 
of this innovation have led to the modern specification of the Additive and Multiplicative Effects network model (AME, Hoff, 2011), 
which, from a matrix representation perspective, generalizes both the stochastic blockmodel and the latent distance model (Hoff, 
2021).

4.2. AME: motivation and framework

The AME approach can be motivated by considering that network data often exhibit first-, second-, and third-order dependencies. 
First-order effects capture agent-specific heterogeneity in sending (or receiving) ties within a network. For example, in the case 
of companies and legal disputes, first-order effects can be viewed as the propensity of each firm to initiate (or be hit by) legal 
disputes. Second-order effects, i.e., reciprocity, describe the statistical dependency of the directed relationship between two agents 
in the network. In the previous example, this effect can be described as the correlation between (a) company 𝑖 initiating a legal 
dispute against company 𝑗 and (b) 𝑗 doing the same towards 𝑖. Of course, second-order effects can only occur in directed networks. 
Third-order effects are described as the dependency within triads, defined as the connections between three agents, and relate to the 
triangular statistics previously illustrated in Fig. 1. How likely is it that “a friend of a friend is also my friend”? Or, returning to the 
previous example: given that 𝑖 has legal disputes with 𝑗 and 𝑘, how likely are disputes to occur between 𝑗 and 𝑘?

The AME network model is designed to simultaneously capture these three orders of dependencies. More specifically, it extends 
the classical (generalized) linear modeling framework by incorporating extra terms into the systematic component to account for 
them. In the case of binary network data, we can make use of the Probit AME model. As is well known, the classical Probit regression 
model can be motivated through a latent variable representation in which 𝑦𝑖𝑗 is the binary indicator that some latent normal random 
variable, say 𝐿𝑖𝑗 ∼ (𝜃⊤𝒙𝑖𝑗 , 𝜎2), is greater than zero (Albert and Chib, 1993). But an ordinary Probit regression model assumes that 
𝐿𝑖𝑗 , and thus the binary indicators (edges) 𝑦𝑖𝑗 , are independent, which is generally inappropriate for network data. In contrast, the 
AME Probit model specifies the probability of a tie 𝑦𝑖𝑗 from agent 𝑖 to agent 𝑗, conditional on a set of latent variables 𝑊 , as

ℙ(𝑌𝑖𝑗 = 1|𝑊 ) =𝚽(𝜃⊤𝒙𝑖𝑗 + 𝑒𝑖𝑗 ), (9)

where 𝚽 is the cumulative distribution function of the standard normal distribution, 𝜃⊤𝒙𝑖𝑗 accommodates the inclusion of dyadic, 
sender, and receiver covariates, and 𝑒𝑖𝑗 can be viewed as a structured residual, containing the latent terms in 𝑊 to account for the 
network dependencies described above. In the directed case, 𝑒𝑖𝑗 is composed as
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𝑒𝑖𝑗 = 𝑎𝑖 + 𝑏𝑗 + 𝑢𝑖𝑣𝑗 + 𝜀𝑖𝑗 . (10)
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Fig. 3. Illustration of the global foreign exchange activity network in 1900. Countries are labeled by their ISO 3166-1 codes, and an edge from node 𝑖 to node 𝑗
indicates active trading of the currency from country 𝑗 within a financial center of country 𝑖.

In this context, 𝑎𝑖 and 𝑏𝑗 are zero-mean additive effects for sender 𝑖 and receiver 𝑗 accounting for first-order dependencies, jointly 
specified as

(𝑎1, 𝑏1), ..., (𝑎𝑛, 𝑏𝑛)
i.i.d.∼ 𝑁2(0,Σ1), with Σ1 =

(
𝜎𝑎 𝜎𝑎𝑏

𝜎𝑎𝑏 𝜎𝑏

)
. (11)

The parameters 𝜎𝑎 and 𝜎𝑏 measure the variance of the additive sender and receiver effects, respectively, while 𝜎𝑎𝑏 relates to the 
covariance between sender and receiver effects for the same node. Going back to (10), 𝜀𝑖𝑗 is a zero-mean residual term which 
accounts for second order dependencies, i.e. reciprocity. More specifically, it holds that

{(𝜀𝑖𝑗 , 𝜀𝑗𝑖) ∶ 𝑖 < 𝑗} i.i.d.∼ 𝑁2(0,Σ2), with Σ2 = 𝜎2
(
1 𝜌

𝜌 1

)
, (12)

where 𝜎2 denotes the error variance and 𝜌 determines the correlation between 𝜀𝑖𝑗 and 𝜀𝑗𝑖, thus quantifying the tendency towards 
reciprocity. Finally, 𝒖𝑖 and 𝒗𝑗 in (10) are 𝑑-dimensional multiplicative sender and receiver effect vectors that account for third-order 
dependencies, and for which (𝑢1, 𝑣1), ..., (𝑢𝑛, 𝑣𝑛) ∼2𝑑 (0, Σ3) holds.

As noted above, AME is able to represent a wide variety of network structures, generalizing several other latent variable model 
classes. This generality comes at the price of a high level of complexity for the estimated latent structure. This can make the model 
class a sub-optimal choice if one wants to interpret the latent structure with respect to, e.g., clustering. On the other hand, its 
flexibility makes it an ideal fit when the underlying network dependencies are unknown, and the researchers’ interest mainly lies 
in evaluating and interpreting the effect of dyadic and nodal covariates on tie formation while controlling for network effects. This 
strength has led to AME being used for several applications of this type (Koster, 2018; Minhas et al., 2019, 2022; Dorff et al., 2020). 
We next showcase the AME framework by applying it to the world foreign exchange activity network as of 1900, originally introduced 
and studied by Flandreau and Jobst (2005, 2009). This application highlights how using AME instead of classical regression can allow 
us to reconsider existing, influential answers to relevant questions via replication.

4.3. Application to the global foreign exchange activity network

In 1900, every financial center featured a foreign exchange market were bankers bought and sold foreign currency against the 
domestic one. Foreign exchange market activity was monitored in local bulletins, which allowed Flandreau and Jobst (2005) to 
collect a global dataset with all currencies used in the world at that time. In the resulting network structure, laid out in Fig. 3, 
countries are nodes, and a (directed) edge from country 𝑖 to country 𝑗 occurs if the currency of country 𝑗 was actively traded in at 
least one financial center within country 𝑖. From the graph representation, laid out using a variant of the Yifan Hu force-directed 
graph drawing algorithm (Hu, 2005), we observe that the most actively traded currencies at the time belonged to large European 
economies, such as Great Britain, France and Germany. To determine the drivers of currency adoption, Flandreau and Jobst (2009)
model this network as a function of several covariates by employing ordinary binary regression. As we show, it is possible to use 
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Table 2

Estimated coefficients and related standard errors (in parentheses) for the 
AME model and the corresponding Probit model for the global foreign ex-
change activity network in 1900.

AME Classical Probit

Intercept −4.845 (5.310) −3.211 (1.580)∗

Sender

⎧⎪⎪⎨⎪⎪⎩

Gold standard −0.629 (0.397) −0.354 (0.155)∗

log-GDP per-capita −0.453 (0.419) −0.259 (0.152)
Democracy index −0.033 (0.064) −0.025 (0.026)
Currency coverage 1.418 (0.405)∗∗∗ 0.470 (0.137)∗∗∗

Receiver

⎧⎪⎪⎨⎪⎪⎩

Gold standard −0.599 (0.667) −0.468 (0.191)∗

log-GDP per-capita 0.426 (0.703) 0.240 (0.159)
Democracy index 0.121 (0.102) 0.066 (0.019)∗∗∗

Currency coverage 2.734 (0.691)∗∗∗ 1.363 (0.181)∗∗∗

Dyadic

{
Distance −1.019 (0.151)∗∗∗ −0.471 (0.064)∗∗∗

log-trade volume 0.488 (0.081)∗∗∗ 0.346 (0.036)∗∗∗

∗∗∗𝑝 < 0.001; ∗∗𝑝 < 0.01; ∗𝑝 < 0.05.

We specify the AME model as in (9), using directed edges 𝑦𝑖𝑗 as response variable. The nodal covariates we use, sourced from 
and described in detail in the replication materials of Flandreau and Jobst (2009), are (log)per-capita GDP, democracy index score, 
coverage of foreign currencies traded in the country, and an indicator of whether the country’s currency was on the gold standard. 
We also include, as dyadic covariates, the distance between two countries as well as their total trade volume. As specified in (10), 
the structured residual term 𝑒𝑖𝑗 comprises additive effects 𝑎𝑖 and 𝑏𝑗 for each node, which capture country-specific propensities to 
send and receive ties, respectively. Multiplicative effects 𝒖𝑖 and 𝒗𝑗 are included to account for third order dependencies. We here 
set the dimensionality of the multiplicative effects to two, which we assume to be sufficient given the relatively small size of the 
network.

To estimate the AME model, we make use of the R package amen (Hoff, 2015). As the likelihood involves intractable integrals 
arising from the combination of the transformation and dependencies induced by the model, closed form solutions are not available. 
The package thus uses reasonably standard Gibbs sampling algorithms to provide Bayesian inference on the model parameters. More 
details on the estimation routine can be found in Hoff (2021).

The results of the analysis, as well as, for comparison’s sake, a Probit regression including the same covariates but ignoring 
network dependencies, are displayed in Table 2. Note that the classical Probit regression model can be seen as a special case of 
AME Probit in which both additive and multiplicative node-specific effects are omitted. Additional model diagnostics and goodness 
of fit measures, together with the estimated variance and covariance parameters, are provided in the Supplementary Material. The 
estimated coefficients (for both models) can be interpreted as in standard Probit regression: For the nodal covariate per-capita GDP, 
for example, a unit increase in the log-per-capita GDP for country 𝑖 corresponds to a decrease of 0.453 in the linear predictor, 
therefore negatively influencing the expected probability of the country to send a tie. The same unit increase in the log-per-capita-
gdp for country 𝑖 corresponds to an increase of 0.426 in the linear predictor, and has therefore a positive impact on the expected 
probability of that country to receive a tie. In the case of a dyadic covariate, such as distance, a unit increase in distance between 
two countries leads to a decrease of 1.019 in the linear predictor, resulting in a decrease in the expected probability of the two 
countries to form a tie in either direction. Overall, we find that the principal drivers of the formation of a tie between 𝑖 and 𝑗 are the 
magnitude of the foreign exchange coverage of the two countries involved, the distance between them, and their reciprocal trade 
volume. These results correspond to the thesis of Kindleberger (1967) and to Flandreau and Jobst (2009), who suggest that the most 
important determinants of international adoption for a currency are size and convenience of use. At the same time, we note that, 
as for the ERGM in the arms trade example, the results of the Probit and AME model differ in several regards. In particular, several 
effects are statistically significant in the Probit but not significant in the AME model. Indeed, unacknowledged network dependence 
can cause downward bias in the estimation of standard errors, leading to spurious associations (Lee and Ogburn, 2021). This finding 
once again highlights how accounting for network dependencies can make a difference when it comes to the substantive results.

As a final note, we add that in this case we went with AME over ERGM as our interest lies in answering the research questions 
addressed by Flandreau and Jobst (2005, 2009), that is assessing the effect of the exogenous covariates in Table 2 on tie formation. 
AME allows us to do that without specifying the configuration of the endogenous network mechanisms at play, which are instead 
accounted for through the imposed latent structure. If, on the other hand, the researcher expects some specific network effects to 
play a role, and wishes to test for their presence and measure their influence on network formation, the ERGM may be a better 
tool. The latter model class can, for example, directly answer questions such as “Does the fact that both countries A and B trade the 
currency of country C influence the probability of A and B to be connected? And if so, to what extent?”. AME, on the other hand, is 
limited to accounting for those effects via the latent variables, without explicitly identifying them, to provide unbiased inference for 
the covariate effects. The choice between the two model classes is thus a matter of what assumptions can be made about the network 
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5. Conclusion

Complex dependencies are ubiquitous in the economic sciences (Chiarella et al., 2005; Flaschel et al., 2008), and many economic 
interactions can be naturally perceived as networks. This area of research has thus received considerable interest in recent years. 
However, this attention has not yet been accompanied by a corresponding general take-up of empirical research methods tailored 
towards networks. Instead, researchers either develop their own estimators to reproduce the features of their theoretical network 
models, or use standard regression methods that assume conditional independence of the edges in the network. Against this back-
ground, this paper seeks to provide a hands-on introduction to two statistical models which account for network dependencies, 
namely the Exponential Random Graph Model (ERGM) and the Additive and Multiplicative Effects network model (AME). These two 
classes serve different purposes: While the ERGM is most appropriate when explicitly interested in testing the effects of endogenous 
network structure, the AME model allows one to control for network dependencies while substantively focusing on estimating the 
effects of exogenous covariates of interest. We present the statistical foundations of both models, and demonstrate their applicability 
to economic networks through examples in the international arms trade and foreign currency exchange, showing that modeling 
network dependencies can alter the substantive results of the analysis. We, moreover, provide the full data and code necessary to 
replicate these exemplary applications. We explicitly encourage readers to use these replication materials to get started with ana-
lyzing economic networks via ERGM and AME, beginning with the examples covered here to then transfer the code and methods to 
their own research.

We especially want to encourage the use of such methods as not accounting for interdependence between observations when 
it exists can lead to biased estimates and spurious findings. Our two applications demonstrate that this bias can result in very 
different empirical results, and thus affect substantive conclusions. It is therefore vital to account for network structure when studying 
interactions between economic agents such as individuals, firms, or countries, regardless of whether one is substantively interested 
in this structure. As shown by Lee and Ogburn (2021), our applications are just two examples of how unaccounted dependence in 
the observed data may lead to spurious findings.

At the same time, this paper can only serve as an introduction to statistical network data analysis in economics. We covered 
two general frameworks in this realm, but, in the interest of brevity, focused only on their simplest versions that apply to networks 
observed at only one time point and with binary edges. However, both frameworks have been extended to cover more general 
settings. For the ERGM, there are extensions for longitudinal data (Hanneke et al., 2010), distinguishing between edge formation and 
continuation (Krivitsky and Handcock, 2014), as well as to settings where edges are not binary but instead count-valued or signed 
(Krivitsky, 2012; Fritz et al., 2022). As for AME, approaches for longitudinal networks are described by Minhas et al. (2016), while 
versions for undirected networks as well as for non-binary network data are presented by Hoff (2021). Both the ERGM and the AME 
frameworks are thus flexible enough to cover a wide array of potential economic interactions. We believe that increasingly adopting 
these methods will, in turn, aid our understanding of these interactions.
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