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Abstract
We propose a novel tie-oriented model for longitudinal event network data. The generating mechanism
is assumed to be a multivariate Poisson process that governs the onset and repetition of yearly observed
events with two separate intensity functions. We apply the model to a network obtained from the yearly
dyadic number of international deliveries of combat aircraft trades between 1950 and 2017. Based on the
trade gravity approach, we identify economic and political factors impeding or promoting the number of
transfers. Extensive dynamics as well as country heterogeneities require the specification of semiparametric
time-varying effects as well as random effects. Our findings reveal strong heterogeneous as well as time-
varying effects of endogenous and exogenous covariates on the onset and repetition of aircraft trade events.
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1. Introduction
Network data capture information on relations between actors. The various types of links between
actors in the network encompass stable ties associated with some duration. For example, in polit-
ical science, military alliance agreements are active for a certain number of years (Cranmer et al.,
2012; Leeds, 2019). A different type of link consists of instantaneous bilateral events—like hos-
tile actions measured in real-time (Boschee et al., 2018). Note that instantaneous events can be
viewed as the limit case of stable ties if the duration of these ties goes to zero (Butts & Marcum,
2017). While instantaneous events can happen anytime, they are not always observable in a high
resolution of time. Under these circumstances, we can count the instantaneous events occurring
in a given time interval, which implies a network-based counting process. We define the respec-
tive class of processes as a multivariate counting process that simultaneously guides all dyadic
interactions within an event network and dedicate this article to its analysis. Comprehensive
monographs and survey articles on statistical network analysis are available in Kolaczyk (2009),
Kolaczyk (2017), Goldenberg et al. (2010), Lusher et al. (2012). Recent overviews of dynamic
network modeling can be found in Fritz et al. (2020), Kim et al. (2018).

In real-life applications, most networks exhibit dynamics, that is, structural changes over time
are driven by endogenous and exogenous determinants, being covariates that capture the present
or past network dependencies and additional information external to the evolution of the network,
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respectively. One way to conceive the generating process of networks is to represent it as a discrete
Markov chain, where the realized path consists of the observed networks, and the state space is
the set of all observable networks. The transition probabilities defining the chain are given by a
distribution over all possible networks (Robins & Pattison, 2001). For stable ties, this view results
in the temporal exponential random graph model (TERGM, Hanneke et al., 2010).

Alternatively, we can perceive the networks as evolving over time, guided by a continuous
Markov process (Holland & Leinhardt, 1977). In this case, network dynamics are often modeled
by the stochastic actor-oriented model (SAOM, Snijders, 1996) or in the case of instantaneous
events with a precise time stamp by the relational event model (REM) as proposed by Butts (2008).
Although modern sensory technology eases the collection of such fine-grained data (Lazer et al.,
2009), exact continuous information is usually not obtainable for every observed event. In our
case, for example, data on the transactions of combat aircraft trades are collected yearly, but
the exact time point of each event (e.g., day of delivery) is impossible to verify (SIPRI, 2019).
Therefore, instead of observing instantaneous events, we only protocol the counts of events
during given intervals. Consequently, the resulting event data can be comprehended as valued
networks, weighted by the count of events that happened within the given intervals. Though the
body of literature on dynamic network models is steadily growing, the consideration of valued
dynamic networks is less developed and mainly limited to cross-sectional analyses (see Desmarais
& Cranmer, 2012; Krivitsky, 2012; Robins et al., 1999; Krivitsky et al., 2009).

In this article, we introduce a tie-oriented model for the analysis of network-based event data.
Tie-orientedmodels assume a bilateral intensity governing the occurrence of events within a dyad,
as opposed to actor-oriented models suggested by Stadtfeld (2012) and extended in Hoffman et al.
(2020), Stadtfeld et al. (2017). This approach partitions the intensity into an egocentric sender-
specific intensity and a probability selecting the receiver conditional on the sender along the
lines of the discrete choice model of McFadden (1973). To represent the dynamic evolution of
the network-based process, we start with a framework that operates in continuous time at the
tie level. Because the ranking of events in our application is not unique due to the lack of exact
time stamps, standard REMs (Butts, 2008; Vu et al., 2011) cannot be readily applied. Therefore,
we develop our model under the assumption that the exact ordering of aircraft deliveries within
the window of a year is unknown and uninformative. Given that a perennial interplay between
policymakers of the involved countries as well as a lengthy order process preludes each trade, this
assumption seems reasonable (Snijders, 2017).

Our approach extends existing models in multiple ways. Firstly, we generalize the separable
decomposition of network dynamics differentiating between the formation and dissolution of ties
introduced by Krivitsky &Handcock (2014), Holland & Leinhardt (1977). In particular, we extend
the separable decomposition to event and count data instead of the continuous specification given
in Krivitsky &Handcock (2014) and Holland & Leinhardt (1977), where solely binary and durable
ties are regarded. Thereby, we enhance recently introduced windowed effects by Stadtfeld et al.
(2017). Furthermore, we propose a semiparametric specification and use penalized B-splines to
obtain flexible time-varying coefficients (Eilers & Marx, 1996). In a similar approach, Bauer et al.
(2021) employ non-linear effects to investigate the collaboration between inventors through joint
EU patents. Kreiß et al. (2019) propose a nonparametric model with time-varying coefficients
that necessitates time-continuous observations, although focusing on the estimator’s properties as
the number of actors goes to infinity. To capture latent actor-specific heterogeneity, we include
random effects for each actor in the network differentiating between the sender and receiver of
events. As an application case, we focus on the strategically most crucial international deliveries of
weapons, namely combat aircraft from 1950 to 2017 (Forsberg, 1994; SIPRI, 2020a). Combat air-
craft comprises all “unmanned aircraft with a minimum loaded weight of 20 KG” (SIPRI, 2020b).
They are very costly, and the number of units transferred constitutes highly valuable information
for military strategists (Forsberg, 1997). Therefore, we propose to focus on yearly unit sales as a
substantial quantity.
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The remainder of this article is structured as follows: the next section formally introduces the
tie-orientedmodel based on a network-based counting process together with extensions to separa-
ble, time-varying, and random effects and an estimation procedure. Consecutively, we introduce
the application case and apply our novel method. The paper concludes with Section 4.

2. Network-based counting process
2.1 A framework for discrete and continuous time event data
We start by proposing the model for time-continuous event data, which are observed at discrete
time points. We use the temporal indicator t̃ ∈ T = [0, T) andmathematically define the network-
valued process as a Poisson process on a valued network given by:

N(t̃)= (Nij(t̃) | i, j ∈ {1, . . . , n}) (1)

where n ∈N is the total number of actors in the network. Process (1) counts the relational events
between all actors in the network during the interval [0, t̃). It is characterized by the network-
valued intensity rate λ̃ (t̃)= (λ̃ij(t̃) | i, j ∈ {1, . . . , n}). The (i, j)th entry of this intensity is defined
as the probability that we observe an instantaneous jump of size 1 in Nij(t̃). Heuristically, this is
the probability of the occurrence of a directed event from actor i to j at time point t̃. By definition,
we set λ̃ii(t̃)= 0 ∀ i ∈ {1, . . . , n} and t̃ ∈ T .

Assuming the process is observed at discrete time points t ∈ {0, . . . , T} leads to the time-
discrete observations Y t , which are defined as cumulated events through:

Y t =N(t)−N(t − 1) ∀ t ∈ {1, . . . , T}
with N(0) set to 0. Based on the properties of a Poisson process, these increments follow a matrix-
valued Poisson distribution:

Y t ∼ Pois
( ∫ t

t−1
λ̃ (ũ)dũ

)
∀ t ∈ {1, . . . , T} (2)

Given that the exact orderings of events within each observation window are not known and
assumed to be uninformative, the integrated intensity on the time interval (t − 1, t] simplifies to
a constant, so that

∫ t
t−1 λ̃ (ũ)dũ= λ (t) holds. Accordingly, we define the observed values of Y t as

yt . As a result of Equation (2), the waiting times between subsequent events follow an exponential
distribution. Therefore, our model is equivalent to the REM as introduced in Butts (2008) in the
special case where ‖ yt ‖1= 1 ∀ t ∈ {1, . . . , T} holds under piece-wise constant intensities.

Generally, we are interested in modeling λ (t) conditional on the past network topology and
exogenous covariates, which are denoted by xt . Covariates can be node-specific (regarding either
a feature of the sender or receiver), dyadic (regarding a relation between the sender and receiver),
or global (regarding the complete network). Building on a first-order Markov property, we allow
the intensity to depend on the past network behavior and exogenous covariates through:

Yij,t ∼ Pois
(
λij(t, yt−1, xt−1)

) ∀ t ∈ {1, . . . , T}; i, j ∈ {1, . . . , n}, i �= j (3)

This is equivalent to the assumption of dyadic independence of events to occur in each time
interval given information on the past and exogenous covariates. Similar assumptions were made
by Lebacher et al. (2021) in the context of separable TERGMs (Krivitsky & Handcock, 2014).
Almquist & Butts (2014) justify this method for network panel data where little simultaneous
dependence between possible ties is present. For our application to the international combat air-
craft trades, this can be legitimized by the long time span of aircraft trades between the order and
delivery of units.1
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Accordingly, we specify the intensity in time-varying semiparametric form through:

λij(t, yt−1, xt−1)= λ0(t)exp{θ (t)�sij(yt−1, xt−1)} ∀ t ∈ {1, . . . , T} (4)

where λ0(t) is the baseline intensity, sij(yt−1, xt−1) is a multidimensional vector consisting of
network statistics and theoretically derived exogenous covariates in t − 1. We discuss different
specifications of the statistics in Section 3 where we describe the application case in more detail.
The coefficient vector θ (t) is possibly time-varying and needs to be estimated from the data.

In many application cases, compositional changes of the actor set occur. To compensate for
this phenomenon in the model, we include indicator functions similar to risk indicators in time-
to-event analysis (Kalbfleisch & Prentice, 2002). To be specific, we multiply the intensity by an
indicator function, determining whether actors i and j are both present in the network at time t:

λij(t, yt−1, xt−1)= I(i, j ∈Rt)λ0(t)exp{θ (t)�sij(yt−1, xt−1)} ∀ t ∈ {1, . . . , T} (5)

withRt denoting the set of actors partaking in the network at time point t. By including the indica-
tor functions I(i, j ∈Rt), we decompose our observed network into a stochastic and deterministic
component. The latter component consists of structural zeros at time point t in the modeled net-
work between all actors where at least one side is not present. With these actor set changes, the
possible range of the network statistics changes as well, leading to values which are not scaled
coherently for a comparison across years. To solve this issue, we divide all network statistics by
their maximal value to allow for a cohesive interpretation.

2.2 Extensions
2.2.1 Separability assumption
Interaction patterns are commonly substantially different for already linked and still unlinked
actors. To adequately capture this characteristic, Holland & Leinhardt (1977) proposed a process-
based model for binary ties taking the values “0” or “1” by two separate intensity functions. One
intensity toggles entries from “0” to “1” (formation of ties) and another one from “1” to “0” (dis-
solution of ties). Thereby, separate and potentially differential effects of statistics depending on
previous interaction behavior are enabled. This model, henceforth called separable model, was
later adopted to the SAOM by incorporating a so-called gratification function (Snijders & van
Duijn, 1997; Snijders, 2003) and to the TERGMby extending it to the separable TERGM (Krivitsky
& Handcock, 2014). However, one should keep these separablemodels apart from the separability
condition introduced in Almquist & Butts (2014). In the following, we combine the framework of
REMs with the separability approach as coined by Krivitsky & Handcock (2014).

More specifically, we postulate two different conditions for the network-based process under
which the effect of all covariates changes. One condition governs events between unlinked actors
and is characterized by the onset intensity. The second condition only regards events among actors
that already interacted with each other and is driven by the repetition intensity. In accordance
with the Markov assumption specified in Equation (4), we define the onset intensity at time t
to control all events which did not occur in yt−1. Accordingly, the repetition intensity drives the
events that did occur at least once in yt−1. This can be incorporated by splitting the intensity into
two conditional intensities:

λij(t, yt−1, xt−1)=
{

λ+
ij (t, yt−1, xt−1), if yij,t−1 = 0

λ−
ij (t, yt−1, xt−1), if yij,t−1 > 0

(6)

where λ+
ij (t, yt−1, xt−1) and λ−

ij (t, yt−1, xt−1) are defined along the lines of Equation (4) and spec-
ified by the corresponding time-varying parametric effects θ+(t) and θ−(t) jointly represented
by θ (t)= (

θ+(t), θ−(t)
)
. The possibly overlapping vectors of statistics are denoted accordingly

as s+ij (yt−1, xt−1) and s−ij (yt−1, xt−1), respectively. Setting s+ij,0(yt−1, xt−1)= 1 enables the inclusion
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of a time-varying intercept λ+
0 (t)= exp{θ+

0 (t)} in the onset model, this holds similarly for the
repetitionmodel. Consecutively, the complete separable model is given by replacing Equation (4)
with

λij(t, Y t−1, xt−1)= exp
{
I(yij,t = 0)

[
θ+(t)�s+ij (yt−1, xt−1)

]
+ I(yij,t > 0)

[
θ−(t)�s−ij (yt−1, xt−1)

]}
= exp

{
θ (t)�sij(yt−1, xt−1)

}
(7)

where θ (t)= (
θ+(t), θ−(t)

)
and

sij(yt−1, xt−1)=
(
I(yij,t = 0) · s+ij (yt−1, xt−1), I(yij,t > 0) · s−ij (yt−1, xt−1)

)

2.2.2 Spline-based time-varying effects
Let the kth component of statistic sij(yt−1, xt−1) be defined as sij,k(yt−1, xt−1) with the matching
coefficient θk(t). We expand each component θk(t) in a semiparametric way by replacing it with a
B-spline basis function (see de Boor, 2001). More specifically, we place equidistant knots on a grid
in T , where the number of knots can be chosen relatively high (Kauermann & Opsomer, 2011).
In principle, we could choose individual grids for each component of θ (t), but for the sake of a
simple notation, we select the same one for all covariates. We now rewrite each coefficient as:

θk(t)= B(t)αk ∀ k ∈ {0, . . . ,K} (8)
where B(t) ∈R

q is the B-spline basis evaluated at t and αk ∈R
q denotes the corresponding coef-

ficient vector. In our context, q constitutes the dimension of the B-spline basis and hence gives
the number of separate B-spline bases used for each covariate. To obtain a smooth fit, we penalize
the difference of adjacent basis coefficients αk as proposed by Eilers & Marx (1996). This leads
to the overall penalized log-likelihood function:

�p(α0, . . . , αK , γ0, . . . , γK)∝
T∑
t=1

∑
i,j∈Rt

(
yij,t log (λij,t)− λij,t

) − 1
2

K∑
k=0

γkα�
k Dkαk (9)

with λij,t = λij(t, yt−1, xt−1). The penalty results from the quadratic form with penalty matrix Dk
constructed from pairwise differences of the spline coefficients and γk as the penalty (and hence
tuning) parameter. This vector γ = (γ1, . . . , γK) controls the smoothness of the fit and is chosen
data based following a mixed model approach as described in detail in Ruppert et al. (2003), see
also Wood (2017). The incorporation of a penalization in Equation (9) results in a biased esti-
mator and a so-called bias-variance tradeoff, which is thoroughly discussed for penalized spline
smoothing in Ruppert et al. (2003). Kauermann & Opsomer (2011) extend the theoretical results
toward a data-driven finite-sample version, and Kauermann et al. (2009) show that the estimates
from Equation (9) are consistent.

2.2.3 Accounting for nodal heterogeneity
The specification of the model introduced so far implicitly implies that the nodal heterogene-
ity is fully captured by the structural statistics sij(yt−1, xt−1). As already thoroughly discussed by
Thiemichen et al. (2016) or Box-Steffensmeier et al. (2018), this can be considered a questionable
assumption. It seems, therefore, advisable to include sender- and receiver-specific random effects
to account for unobserved heterogeneity. Let therefore uSi denote a latent sender-specific effect of
actor i and uRj the receiver-specific effect of actor j. This leads to the heterogeneous intensity

λij(t, yt−1, xt−1, uS, uR)= λij(t, yt−1, xt−1)exp{uSi + uRj } ∀ t ∈ {1, . . . , T} (10)
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We assume uS = (uS1, . . . , uSn)� ∼N(0, Inτ2S ) and uR = (uR1 , . . . , uRn)� ∼N(0, Inτ2R) with In as the
n× n identity matrix. The expression λij(t, yt−1, xt−1) may be specified through Equation (4) or
(7). Conditional on the random effects uS and uR, the distributional assumption (3) still holds

Yij(t) | uS, uR ∼ Pois
(
λij(t, yt−1, xt−1, uS, uR)

)
(11)

∀ t ∈ {1, . . . , T}; i, j ∈ {1, . . . , n}, i �= j

where λij
(
t, yt−1, xt−1, uS, uR

)
is specified in Equation (10).

2.3 Estimation
The vector-valued function θ (t)= (

θ+(t), θ−(t)
)
is estimated by finding the argument maximiz-

ing the penalized likelihood resulting from Equation (11) and viewing the penalty on coefficient
vector α as an improper prior distribution. This leads to a generalized additive mixed model,
which is extensively discussed in Wood (2017), Ruppert et al. (2003), Ruppert et al. (2009). To
leverage the advanced optimization techniques proposed for this model class, we initially calculate
all covariates sij(yt−1, xt−1) for each actor-tuple and at each point in time. By doing that, we trans-
form the data into a generalized version of the so-called counting-process representation, which
is known from time-to-event analysis (Tutz & Schmid, 2016; Friedman, 1982; Whitehead, 1980).
For each snapshot of the event network at time point t, this procedure generates a design matrix
of |Rt| conditionally independent observations with a target variable yij,t expressing the number
of events that occurred between a specific tuple of actors and covariates given by sij(yt−1, xt−1).

For the estimation, we use the versatile R package mgcv (Wood, 2017, version 1.8-31). Thereby,
we follow Wood et al. (2017) who enhance the pseudo-quasi-likelihood method by Breslow &
Clayton (1993) for the analysis of larger data sets. The main extensions are threefold:

(1) The tuning parameters γ are not estimated until convergence in each iteration of the
estimation procedure but updated by only one Newton step.

(2) Efficient methods for computing the matrix cross-products in each iteration are run in
parallel (Li & Wood, 2020).

(3) The covariates are discretized along a marginal grid. Hence, the design matrices for the
smooth covariates take significantly less memory.

Wood et al. (2017) describe the method in detail as it is implemented in the function bam of
the already mentioned R package. Well-calibrated frequentist confidence bands for the estimated
function θ (t) are guaranteed by Bayesian large sample properties (Wood, 2006).

3. Application
3.1 Data
So far, quantitative work on the international arms trade utilizing statistical network analysis has
mostly been restricted to binarized networks. Here, the occurrence of a trade relationship between
two countries in a specific year was modeled conditional on endogenous and exogenous statistics
by the gravity model of trade by employing TERGMs and extensions of it (Lebacher et al., 2021;
Thurner et al., 2019). Contrary, Lebacher et al. (2020) fit a network disturbance model on the
yearly aggregated trend indicator values (SIPRI, 2020b) of the international arms trades, main-
taining the valued character of deliveries. All these contributions rely on data provided by the
Stockholm International Peace Research Institute (SIPRI, 2020a), and they consider each type of
major conventional weapons indiscriminately.

In the following, we concentrate on the counts of combat aircraft deliveries, as reported in
the SIPRI data, where each combat aircraft delivery is perceived as an event. We focus on the
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Figure 1. The international network of combat aircraft trades in twoperiods. Node size is proportional to the sumof involved
deals and the grey-scale of each tie indicates the aggregated amount of deals in the specific time frame. The labels of the
nodes are the ISO3 codes of the respective countries. The four major sender countries are drawn in a darker shade.

transfers of aircraft because these weapon systems usually incorporate the highest technological
sophistication. Therefore, they are being restricted to close allies. Furthermore, they are of cru-
cial strategic importance for international deterrence and counterinsurgency in intrastate conflict
(Hoeffler & Mérand, 2016; Mehrl & Thurner, 2020). Lastly, their sizes and cost make the avail-
able data highly reliable (Forsberg, 1994, 1997). Previous research on combat aircraft trade was
limited to the quantitative analysis of a small subset of countries or fighter programs (Hoeffler
& Mérand, 2016; Vucetic, 2011; Vucetic & Nossal, 2012). Contrasting these endeavors, we take
a global point of view on the combat aircraft trade. Here, a closer look at the data reveals how
countries commonly partition major deals with their stable trade partners into multiple deliveries
occurring over the span of several years. For instance, the United States and Japan signed a deal in
1984 comprising 32 quantities of aircraft, which were realized between 1988 and 2016. The addi-
tional information provided by this segmentation of trade deals into isolated deliveries would be
lost when only regarding binarized networks.2

Two examples of the network representing aggregated events over 6 years are depicted in
Figure 1. Generally, the networks exhibit a structure with hubs around the United States (USA),
Russia (RUS), France (FRA), and United Kingdom (UK). Coincidentally, this set of countries
also demonstrate the highest average hub-scores over time (Kleinberg, 1999). Analog to the dis-
tribution of the in- and out-degrees in binary networks, we can examine the distribution of the
concatenated in- and outgoing event counts for all years. We call the respective statistics in- and
out-count, although they are equivalent to the generalized degree proposed byOpsahl et al. (2010).
The empirical distribution of those statistics enables a better understanding of the topology of the
observed networks. Figure 2(a) suggests a strong centralization in the outward event count distri-
bution. Some countries are the sender of up to 130 deliveries in one year. Still, on average, 82%
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Figure 2. Distributions of the Out- and In-Counts for all included countries concatenated over all years. The shaded area
represents the minimum andmaximum of the observed values. Both graphs are represented on a logarithmic scale.

of the countries do not export. The inward count distribution is not as skewed and centralized, as
shown in Figure 2(b). Nonetheless, the mode of the distribution is still at zero.

3.2 Model specification
We now employ the outlined model to the international combat aircraft trade network span-
ning from 1950 to 2017. The event networks are observed yearly. In this context, yij,t denotes
the number of observed combat aircraft units delivered in year t between country i and j and its
distribution follows from Equation (3). Given this information, we estimate the time-continuous
intensities of all country-dyads, which are per assumption governed by the repetition intensity if
the respective countries traded in the previous year and by the onset intensity otherwise as defined
in Equation (7).3 All network actors are countries, and an event represents the delivery of combat
aircraft between them. To appropriately capture interdependencies of the observed event counts,
we incorporate a wide range of endogenous statistics, whose mathematical representation is given
in Table 1 and visualized in Figure 3. Generally, we define all non-binary structural statistics to be
bounded between 0 and 100 to guarantee a consistent interpretation independent of the varying
network size and prevent the implied autoregressive counting process from unrealistic behavior
(Gjessing et al., 2010).

As already investigated in multiple applications (Snijders, 2003; Newman et al., 2002), the
degree structure plays a crucial role in the observed event network. In the case of directed events,
the in- and out-degree of a country determine its relative location in the network (Wasserman &
Faust, 1994). In our application, the degrees reflect the number of different countries with whom
a specific country had at least one transaction in a particular year as an importer (in-degree) and
exporter (out-degree). To reveal the impact of these measures on the intensity of observing an
event, we include four degree-related statistics concerning the sender and receiver in our speci-
fication, as illustrated in Figure 3(a)–(d). For instance, one can interpret a positive effect of the
sender’s out-degree as the tendency to trade with countries that are already sending a lot in the
previous year.

Besides degree-based statistics, Holland & Leinhardt (1971), Davis (1970) highlight the role
of triangular structures in networks. When adapted to event relations, it refers to the change in
intensity of an event between countries i and j, if they are indirectly connected by an additional
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Table 1. Mathematical formulations of the structural covariates as calcu-
lated for sij(yt−1, xt−1). The number of countries that are present in the
network at time point t is denoted by nt . The identifying letters concern
the respective graphical illustrations in Figure 3

Name Mathematical representation

(a) In-degree sender 100
nt−1

∑n
h=1 I(yhi,t−1 > 0)

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) In-degree receiver 100
nt−1

∑n
h=1 I(yhj,t−1 > 0)

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(c) Out-degree sender 100
nt−1

∑n
h=1 I(yih,t−1 > 0)

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(d) Out-degree receiver 100
nt−1

∑n
h=1 I(yjh,t−1 > 0)

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(e) Transitivity 100
nt−2

∑n
h=1 I(yih,t−1 > 0)I(yhj,t−1 > 0)

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(f) Shared supplier 100
nt−2

∑n
h=1 I(yhi,t−1 > 0)I(yhj,t−1 > 0)

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(g) Reciprocity I(yji,t−1 > 0)

(a) (b) (c)

(e) (f) (g)

(d)

Figure 3. Graphs consisting of three arbitrary actors i,j, and h that illustrate the included triangular and dyadic covariates in
the first row. Dashed arrows represent the event that is modeled and solid arrows in t− 1.

two-path, i.e., third country. Since the aircraft deliveries between countries are directed, there
are multiple ways to define two-paths. We incorporate two triadic structures: transitivity, Figure
3(e), and shared supplier, Figure 3(f). While transitivity in an event network suggests that already
having observed a delivery from country i to k and k to j affects the intensity of an event from i to
j, the shared supplier mechanism reflects the tendency toward trading with countries that import
combat aircraft from a common exporter. These triangular structures were the only variants found
to be relevant for the trade of combat aircraft. Likewise, we control for reciprocity, which is the
tendency of countries to respond to previous events directed at them, Figure 3(g).

Political economy models of arms trade (Levine et al., 1994; Thurner et al., 2019) as well as the
gravity model of arms trade guide the selection of appropriate exogenous covariates. Thurner et al.
(2019), Akerman & Seim (2014) included the dyadic distance in kilometers between the capitals of
country i and j as well as the logarithmic gross domestic product (GDP in US $) of the sender and
receiver countries as covariates in the model. Pamp et al. (2018), Lebacher et al. (2021) empha-
size the impact of military expenditures as a proxy for the Newtonian power of attraction, which
we include in logarithmic form as a sender- and receiver-specific covariate. The respective yearly
data were collected by SIPRI (2019) in US $ and combined by Nordhaus et al. (2012) with data
from Singer et al. (1972). We use this combined data set but employ linear interpolation if at least
60% of the time series for a specific country is observed. Moreover, we incorporate two dyadic
variables controlling whether country i and j signed an alliance treaty or are similar to each other
in terms of their regimes in power, following Martínez-Zarzoso & Johannsen (2019), Thurner
et al. (2019). The alliance treaty obligations and provisions project identified military alliance
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Figure 4. Results of endogenous statistics relating to centrality. The shaded area indicates the 95% confidence bands of the
estimates and the dotted horizontal lines represent the time-constant parameters.

agreements (Leeds, 2019) and we operationalize regime dissimilarity by the absolute difference
in the Polity IV scores of countries i and j (Marshall, 2017). This measure indicates all countries’
year-wise regime characteristics and takes values from −10 (strongly autocratic) to 10 (strongly
democratic). Thus, the absolute differences lie between 0 (strong similarity) and 20 (strong dissim-
ilarity) for each country-dyad and year. The sources and used period of all incorporated exogenous
covariates are described in more detail in the Supplementary Material.

3.3 Results
3.3.1 Fixed effects
In Figures 4–7, the full results of the time-varying estimates are given accompanied by alternative
time-constant coefficients as dotted horizontal lines. The latter are obtained by setting θ (t)≡
θ . All exponentially transformed estimates at a specific point in time can be interpreted (ceteris
paribus) as the multiplicative change of the intensity (6) corresponding to the effect of covariates
in relative risk models (Kalbfleisch & Prentice, 2002). Therefore, an effect estimated at zero does
not change the relative risk of an event to happen, but positive or negative coefficients lead to a

https://www.cambridge.org/core/terms. https://doi.org/10.1017/nws.2021.9
Downloaded from https://www.cambridge.org/core. UB der LMU München, on 18 Nov 2021 at 08:41:45, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/nws.2021.9
https://www.cambridge.org/core


Network Science 301

−0.25
0.00
0.25
0.50
0.75
1.00

1950 1960 1970 1980 1990 2000 2010
Time (t)

θ̂+ (t)

Transitivity, Onset(a) (b)

(c) (d)

(e) (f)

−0.25
0.00
0.25
0.50
0.75
1.00

1950 1960 1970 1980 1990 2000 2010
Time (t)

θ̂– (t)

Transitivity, Repetition

−0.3

0.0

0.3

0.6

1950 1960 1970 1980 1990 2000 2010
Time (t)

θ̂+ (t)

Shared Supplier, Onset

−0.3

0.0

0.3

0.6

1950 1960 1970 1980 1990 2000 2010
Time (t)

θ̂– (t)

Shared Supplier, Repetition

−2

−1

0

1

1950 1960 1970 1980 1990 2000 2010
Time (t)

θ̂+ (t)

Reciprocity, Onset

−2

−1

0

1

1950 1960 1970 1980 1990 2000 2010
Time (t)

θ̂– (t)
Reciprocity, Repetition

Figure 5. Results of endogenous statistics relating to past dyadic interaction and clustering. The shaded area indicates the
95% confidence bands of the estimates and the dotted horizontal lines represent the time-constant parameters.

higher or lower relative risk of the event to occur, respectively. Additionally, an event’s occurrence
is equivalent to the increment of one in the counts of aircraft units since one event represents a
combat aircraft delivery in our application case.

From simple inspection, it can be concluded that in all cases, time-varying coefficients are car-
rying completely different information as compared to time-constant coefficients. This is evidence
of the necessity to account for the multiple systemic changes within the international aircraft mar-
ket during the considered time interval. From a statistical point of view, the time-varying effects
can also be underpinned by a lower cAIC value when compared to time-constant effects (see
Section 3.4 for additional details on the cAIC).

Moreover, we observe different shapes of the curves of the time-varying coefficients when com-
paring onset and repetition conditions leading to the conclusion that the import of all covariates
on these two separate conditions is different.

Time-varying effects relating to the degree structure are shown in Figure 4. Figure 4(a) indicates
a steady negative influence of the sender’s in-degree in the onset condition from around 1965
onward. It can be concluded that the count of dyadic events is lower if the sender’s in-degree is
high, which may be justified by the observation that only a small subset of countries is adequately
equipped to produce and export aircraft. This technological possibility, in turn, increases self-
sufficient behavior, thus alleviating the need for additional imports. Contrary, in the repetition
condition, the in-degree of the receiver exhibits a positive effect for the post-Cold War period
from 1990 to 2010, Figure 4(b). Otherwise, the effect is insignificant. Concerning the receiver, a
negative effect of the in-degree can be observed from 1950 to 1980 in the onset model, Figure
4(c). When proceeding to deliver aircraft, the receiver’s in-degree effect is similar to the sender’s
in-degree effect, Figure 4(d). For the sender’s out-degree, the effect in the onset model is negative
until around 1980 and thereupon positive. In the latter case, the effect mirrors a higher tendency
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Figure 6. Results of exogenous statistics relating to economic factors. The shaded area indicates the 95% confidence bands
of the estimates and the dotted horizontal lines represent the time-constant parameters.

of delivering combat aircraft if the sender is already a prolific exporter country. During the entire
observational period, we observe that receivers are not senders themselves, thus exhibiting low
out-degrees, Figure 4(g) and (h). This behavior does not depend on the condition of the dyadic
intensity.

The specified triadic structures play a substantial role during the Cold War. Afterwards, the
impact disappears but is again strengthened after 2000 under the onset condition, Figure 5(a)
and (c). In particular, an increasing number of indirect transitive connections between country i
and j results in a greater count of aircraft deliveries between 1950 and 1990. Similarly, receiving
combat aircraft from the same third country increases the unit sales between the receivers during
the Cold War period, Figure 5(c). A possible consequence of this process is the strengthening of
a block structure. For a consecutive delivery, the triadic effects are less pronounced, and in the
case of shared suppliers, Figure 5(d), constantly insignificant. The count of reciprocal events, on
the other hand, raises trade from 1990 to 2005, Figure 5(e). This result may be a consequence of
an international market opening after the Soviet Union’s fall, leading to multiple emergent coun-
tries. If the relationship is maintained, reciprocal events are encouraged throughout the period of
observation, although to a smaller degree, Figure 5(f).
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Figure 7. Results of exogenous statistics relating to political, security, and geographical factors. The shaded area indicates
the 95% confidence bands of the estimates and the dotted horizontal lines represent the time-constant parameters.

While the logarithmic GDP of the receiver has a relatively weak positive influence when starting
a trade relation, Figure 6(a), its repetition is only affected after the end of the Cold War, Figure
6(b). On the sender-side, the estimates of both models are constantly positive, Figure 6(c) and (d).
In contrast to the effect in the onset model, the sender’s logarithmic GDP has a higher effect from
1950 to 1980 in the repetition condition. Moreover, the military expenditure of the receiver is one
of the main drivers in this model, Figure 6(f). Here, higher military spending of possible sender
countries augments the count of receiving combat aircraft deliveries, specifically during the 1950s.
Conversely, the exogenous covariate only slowly gains attention in the onset condition after the
ColdWar, Figure 6(e). While the effect of the military expenses of the sender stays overall positive
when delivering aircraft for the first time, it inhibits it to be repeated in the next year, Figure 6(g)
and (h).

The findings in Figure 7(a) and (b) indicate that similar regimes are overall more likely to
start trading combat aircraft. Only at the height of the Cold War from 1970 to 1980, the effect
is estimated at approximately 0, Figure 7(a). The strength of the effect is less salient in the
repetition condition than in the onset condition of our model, Figure 7(b). Furthermore, the time-
varying coefficients discover a steadily decreasing influence of beginning to transact with allies,
Figure 7(c). This finding suggests evidence of the overall deteriorating importance of interna-
tional alliances in combat aircraft transactions if they did not trade in the previous year. We do
not observe a similar downward trend when repeating an event, Figure 7(d). Lastly, a larger dis-
tance between the respective capitals generally hinders events from occurring, Figure 7(e) and
(f). Therefore, countries tend to trade with spatially more close than distant partners. This may be
caused by the relatively lower transportation cost and is in line with the expectations of the gravity
model of trade (Martínez-Zarzoso & Johannsen, 2019; Thurner et al., 2019, see corrigendum).
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Figure 8. Country-specific random sender and receiver effects. The drawn label represents the respective ISO3 code of the
represented country.

3.3.2 Random effects
The random effects permit an extended analysis of the unexplained heterogeneity in the model.
More precisely, the random effects express country-specific deviations from an overall behavioral
trend captured by the time-varying effects. Additionally, they correct the countries’ repeated mea-
surements as simultaneous senders and receivers of events in each year. The model introduced in
Section 2 comprises two country-specific random effects for all countries as a sender and receiver
of combat aircraft deliveries. The results are given in Figure 8 and visualized on a world map in
Figure 9.

In the first quadrant of Figure 8, countries with a positive random sender and receiver effect
are shown. This composition of random effects suggests that the respective countries are senders
and receivers of more combat aircraft events than marginally expected. Countries in the Middle
East, for example, Israel (ISR), Libya (LBY), and Jordanian (JOR), are allocated to this group.

Negative sender but positive receiver effects are identified for countries in South-East Asia
(Thailand (THA), Cambodia (KHM), Laos (LAO), Myanmar (MYR), and Sri Lanka (LKA)).
Compared to the average behavior, these countries are somewhat reluctant as senders and con-
fident as receivers of combat aircraft deliveries. The latent sender effect of Mexico (MEX) is the
most negative coefficient estimated. This suggests Mexico’s reliance on the import of combat air-
craft, although its high economic status would imply additional participation in the event network
as a sender.

The third quadrant contains all countries, which were less active than expected as a sender and
receiver of events. This strand of countries is either economically strong, yet exhibiting a passive
trading behavior, for example, Luxembourg (LUX), or relatively poor and missing preconditions
to send or receive weapons, for example, Trinidad and Tobago (TTO).

Lastly, a negative random coefficient regarding receiving arms is mostly associated with
European countries. The corresponding sender effect is positive. Hence, these countries are
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Figure 9. Random country-specific sender (a) and receiver (b) effects. The layout represents the borders as of 2020.

situated in the fourth quadrant of Figure 8. The East European countries Moldova (MDA),
Ukraine (UKR), and Belarus (BLR) have the highest positive sender effect paired with relatively
low receiver effects.

In terms of continent-wide tendencies, we locate Africa in the first three quadrants. South
America is principally assigned to the first and second quadrant. Asia, Oceania, and North
America are more dispersed and exhibit less homogeneous country behavior.

3.4 Model comparison and assessment
We compare the estimated model to alternative specifications, which are chosen to reflect all
subsequent extensions of Section 2.2 and are indicated in Table 2. Model 1 includes all effects
linearly without the separable extension. This is we assume that θ (t)≡ θ and omit the separation
of the statistics sij(yt−1, xt−1) into s+ij (yt−1, xt−1) and s−ij (yt−1, xt−1). This separability is added in
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Table 2. Specifications of the compared models and resulting corrected AIC (cAIC)
values

Separability Time-varying effects Random effects cAIC

Model 1 84,622.47

Model 2 � 65,614.86

Model 3 � � 63,174.49

Model 4 � � � 59,717.77

Model 2 according to Section 2.2.1. Model 3 includes time-varying coefficients as introduced in
Section 2.2.2. Lastly, Model 4 is the model whose findings were presented in Section 3.3. Hence,
also random effects are taken into account, which are explained in Section 2.2.3.

One way to compare these models is by means of information criteria, that is, the Akaike infor-
mation criterion (AIC, Akaike, 1974). As already discussed in the context of linear mixed models
(Greven & Kneib, 2010) and generalized mixed models (Saefken et al., 2014), the usage of the
conditional or marginal AIC does not appropriately incorporate the uncertainty of estimating the
covariance parameters of the random effects (in our application τ2S and τ2R). Therefore, we uti-
lize a corrected conditional AIC proposed by Wood et al. (2016). The resulting cAIC values are
given in Table 2 and indicate a superior model fit when all extensions introduced in Section 2.2
are included.

We assess the selected Model 4 with a graphical tool proposed by Hunter et al. (2008) for
general network models. The procedure’s basic idea is to evaluate whether networks randomly
generated according to the estimated network model at hand conserve pre-specified characteris-
tics of the observed network reasonably well. In our particular case, we simulate yearly increments
of our network counting process from Equation (11) and consider the result as a count-valued
network. However, most network statistics commonly used for this assessment are solely defined
for binary networks. Therefore, we propose a suite of novel statistics for our application case. To
detect whether our model adequately replicates possible over- or underdispersion in the count
data, we rely on the statistics from rootograms, that is, the empirical and simulated frequencies
of the counts in the networks. For general regression tasks involving count data, rootograms were
proposed by Kleiber & Zeileis (2016) and date back to Tukey (1977). Usually, one compares the
square-root-transformed observed and expected frequencies of the target variable. However, in
our application, we substitute the square-root transformation with a log transformation due to
the high percentage of zeros and use the simulated rather than expected frequencies to fit into the
framework of Hunter et al. (2008). Secondly, we investigate to what extent the performance of our
model is stable over the time frame we analyze. To do so, we compute the clustering coefficient
for weighted networks as proposed by Opsahl & Panzarasa (2009)4 for the yearly networks yt .
Besides, we examine the average in-count per year, which is directly related to the average count
per year. In the Supplementary Material, we show how the distribution of the observed counts of
in- and outgoing events given in Figure 2 is reproduced in the simulated networks and provide
the mathematical formulations of all statistics.

Figure 10 shows the variability of all specified statistics computed for all 1,000 simulated net-
works through boxplots and displays the average value by a blue triangle. Red lines indicate the
observed measurements. We can infer from Figure 10(a) that the estimated model captures even
high event counts between countries averaged over the entire period. At the same time, our
proposed model is capable of representing the yearly clustering as well as the average in-count,
see Figure 10(b) and (c). Therefore, we gather that the performance of the proposed model is
consistently good throughout the observational period.
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Figure 10. Comparison of the observed and simulated frequencies of the dyadic event counts (a), weighted clustering coef-
ficients over time (b), and average in-count over time (c). The red lines indicate the observed values of each statistic, whereas
the boxplots are the result of drawing 1,000 networks according to Equation (11) and the blue triangles the average values.

4. Conclusion
We introduced a novel model for the analysis of relational event data. Originating in a counting
process operating in continuous time that we only observe at specific time points, we derived
a tie-level intensity, whose parameters can be estimated according to the maximum likelihood
principle. Extensions to separable models, which govern the onset and repetition of events by two
functions, and the incorporation of time-varying and random coefficients are given. Eventually,
we applied the procedure to the international combat aircraft network from 1950 to 2017. By
doing that, we use the additional information provided by the counts of yearly aircraft deliveries to
estimate a time-continuous intensity, contrary to existing work on binarized networks. Moreover,
the separability detects fundamentally different processes governing the onset and repetition of
event relationships, while the time-varying effects uncover a systemic change during the Cold
War period. Furthermore, we identified triangular network statistics and the sender’s economic
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nodal covariates as the principal drivers of the onset condition of the proposed intensity. Here, a
decaying effect of bilateral military alliances became apparent. For the repetition condition, this
effect remained consistently positive, and the receiver’s high military expenditure was shown to
be the driving force. Finally, the random effects enable a visual comparison of the unexplained
heterogeneity between the modeled countries (Figure 9) and correct the estimates for repeated
measurements as well as possible overdispersion.
Supplementary materials. For supplementary material for this article, please visit http://dx.doi.org/10.1017/nws.2021.9
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Notes
1 We further provide a descriptive analysis in the Supplementary Material to demonstrate high positive auto-correlation of
the endogenous covariates between consecutive years; therefore, they are a reliable proxy of simultaneous dependence.
2 In the Supplementary Material, we deliver the results regarding alternative models for the data. Overall, there is no relevant
difference to the findings presented subsequently.
3 As a robustness check, we compare different time frames to define which events are driven by the onset and repetition
intensity, for example, having delivered combat aircraft the last one or two years in the Supplementary Material.
4 We opt for the variant of the statistic that aggregates triplets of event counts within a year via the arithmetic mean.
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